

AN17 Rev 1.2 (Sept 2013)

AutoANT Scripts

COPYRIGHT INFORMATION

This application note is the property of Dynastream Innovations Inc. and is intended for limited circulation
only. Any reproduction or distribution without written consent from Dynastream Innovations Inc. is strictly
prohibited.

©2013 Dynastream Innovations Inc. All rights reserved.

ABSTRACT

The ability to transmit specific data in a controlled, repeatable manner enhances the accuracy and speed
of ANT device development, testing, and diagnostics. AutoANT Scripts provide developers with this ability.
This application note provides an overview of AutoANT Scripting, and describes how to create scripts
manually as well as with a device simulator.

2 of 13 AN17

 thisisant.com

TABLE OF CONTENTS

1 INTRODUCTION ... 3

1.1 AUTOANT SCRIPT OVERVIEW ... 3

2 RELEVANT DOCUMENTS .. 3

3 SCRIPT ELEMENTS ... 3

3.1 VERSION TAG ... 4

3.2 SCRIPT CODE COMMENTS .. 4

3.3 PRINTING TO OUTPUT ... 4

3.4 COMMANDS .. 4

3.4.1 Write Commands ... 4

3.4.2 Read Commands .. 4

3.4.3 Pause Commands .. 6

3.4.4 PauseBreak Commands ... 7

3.4.5 Loop and Loopend Commands .. 7

4 EXAMPLE SCRIPT ... 8

5 PRODUCING A SCRIPT... 10

5.1 MANUAL SCRIPT GENERATION .. 10

5.2 AUTOMATIC SCRIPT GENERATION ... 11

6 CLOSING REMARKS ... 13

LIST OF FIGURES

Figure 5-1. AutoANT Script Message Bytes ... 10
Figure 5-2. SimulANT+ .. 11
Figure 5-3. Simulator Device Log .. 12
Figure 5-4. Using the Parsing Tool .. 13
Figure 5-5. Parser Output and Completed Script .. 13

AN17 3 of 13

 thisisant.com

1 Introduction

AutoANT is a simplistic script language used to control sending and receiving ANT serial messages to and
from an ANT device. It was created to allow automation of many testing and debugging scenarios, and
then developed into a general purpose tool that can be used for a wide variety of scenarios. This
document describes the script language and how it can be used, including examples. To run the scripts,
ANTWare II now includes an AutoANT script engine which can execute scripts written in the AutoANT
format.

For more information on using the ANTware II AutoANT tool, refer to the ANTware II User Guide.

1.1 AutoANT Script Overview

The simplest way to use an AutoANT script is to control an ANT enabled USB device through the ANTware
II interface. Scripts can be used to sequence pre-determined ANT serial messages, providing the user with
the ability to automate (and hence easily reproduce) their desired interactions with ANT.

AutoANT scripts can also be used in other ways, from simple time saving configuration scripts to more
complicated scripts for advanced configuration procedures, repetitive or multi-part data messaging
sequences, device simulations, or to recreate transmissions recorded from an ANT debug log file.

Used correctly, AutoANT scripts are powerful tools for ANT development; however, the user should be
aware that AutoANT is not a fully-featured scripting language. Most notably, AutoANT does not support
conditional branching. If greater flexibility than AutoANT can provide is required, then developing a
custom application using the ANT Library Package is the recommended approach. The ANT Library
Package can be found at www.thisisant.com.

2 Relevant Documents

It is strongly recommended that the following documents be reviewed prior to using this application note :

 ANT Message Protocol and Usage

 ANTware II User Guide

 Relevant ANT+ Device Profile(s)

3 Script Elements

The AutoANT script language utilizes only a simple set of operations:

 Write (w) – sends a scripted ANT serial message to the ANT device

 Read (r) – waits to receive the scripted ANT serial messages from the ANT device

 Pause (p) – pauses the script engine for a defined length of time

 PauseBreak – pauses the script engine until the user manually resumes the script

 Loop – allows the contents of a loop to be repeated a finite number of times

Descriptions of AutoANT language features, operations, and examples of their usage are provided below.
Examples in this section are excerpts from the example script found in section 4.

http://www.thisisant.com/pages/developer-zone/software-tools
http://www.thisisant.com/
http://www.thisisant.com/pages/developer-zone/ant-protocol-and-usage

4 of 13 AN17

 thisisant.com

3.1 Version Tag

A version tag is found at the beginning of all AutoANT scripts:

###ANT_SCRIPT_VERSION: 0.01

 It is important to recognize that the version tag is present to define the minimum version of the script
engine that is required, not to denote the version number of the script itself . It is in place to ensure
forward compatibility with future versions of the script engine.

3.2 Script Code Comments

In any .ants file, comments are denoted using the ‘#’ character. Anything typed after a ‘#’ character will
be ignored by the script reader. Comments will be included in the accompanying figures in this document
to highlight important information.

3.3 Printing to Output

Text can be output to the script output field of the script engine (typically the screen) by using the ‘o’
command:

o***

o This text will be displayed in the script output field

o***

3.4 Commands

To write (send) and read (receive) an ANT serial message in a script, begin with the message ID followed
by the data payload. Do not include the sync byte, message length or checksum fields. Each byte is
represented using hexadecimal values, delimited within square brackets (e.g. 0x7B is written as [7B]).

For more information regarding the format of ANT messages, refer to the ANT Message Usage and
Protocol document.

Note that whitespace is ignored in AutoANT commands, hex values do not need to be zero padded, and
that the AutoANT script reader is NOT case sensitive :

 [A] is the same as [0A]

 [3][0][2 d] [c] is the same as [03][00][2D][0C]

3.4.1 Write Commands

 ‘Write’ commands contain the ANT serial message to be sent to the ANT device, either to configure the
chip or to transmit data over the wireless channel. The ‘w’ character indicates that the serial message is

a write command:

w [42][00][10][00] # Assign ch0, bidir master, netwk0

3.4.2 Read Commands

The ‘r’ command is used to indicate that the script should wait for a specific serial response message

before continuing.

A read command specifies the exact format of the serial response message that the application shall wait
for. The command will look for a message which matches both the content and number of bytes given in
the call.

An example of an ‘r’ command:

w [42][00][10][00] # Assign ch0, bidir master, netwk0

r [40][00][42][00] # Wait for RESPONSE_NO_ERROR (default timeout = 3s)

In this case, the script is waiting for a RESPONSE_NO_ERROR reply to the assign channel command.

3.4.2.1 Response Buffer
In order to monitor responses reliably when searching for matches for read commands, the script engine

AN17 5 of 13

 thisisant.com

buffers incoming messages, rather than attempting to monitor them in real time. This buffer is cleared
whenever a write operation occurs; a read command completes successfully; or when the script resumes
execution from a pause or other stoppage.

This means whenever a read operation occurs, all messages since the last buffer clearing event are
searched; not necessarily those only occurring after the time of its call. Note that an unsuccessful read
call does NOT clear the response buffer.

3.4.2.2 Response Timeout
All read commands shall have an associated timeout parameter, which determines how long to wait for the
response before reporting failure and then continuing execution of the script . This timeout value can be
specified manually by including the number of milliseconds to wait as an integer, or use the default
timeout by not specifying a value, as shown below. The default timeout is initialized to 3000 on start -up,
but can be manually changed for any subsequent operations in the script by calling the ‘r’ command with
a time parameter and no serial message specified:

w [42][00][10][00] # Assign ch0, bidir master, netwk0

r [40][00][42][00] # Wait for RESPONSE_NO_ERROR (default timeout = 3s)

w [51][00][E9][03][2B][05] #Set Channel ID. Dev# 1001, DevType 43, TxType 5

r100 [40][00][51][00] #Wait for RESPONSE_NO_ERROR (100ms response timeout)

r5000 #Set default timeout to 5s

If an ‘r’ command exceeds the specified timeout value, a failure will be displayed in the script output

field but the program will continue running the script .

3.4.2.3 Critical Response Flag
Read commands are often essential for the script to continue in a known state. In these cases, the
'critical' response flag is available which will cause the script to display an error and stop processing when
the read command times out, instead of continuing execution. A read command is flagged as a critical
response by including the ‘!’ character immediately following an ‘r’:

w [43][00][00][20] #Set Channel Period: (8192/32768) = 4Hz

r! [40][00][43][00] #Wait for RESPONSE_NO_ERROR (Critical response 5s timeout)

w [45][00][42] #Set Channel RF Frequency

r!300 [40][00][45][00] #Wait for RESPONSE_NO_ERROR (Critical response 300ms timeout)

6 of 13 AN17

 thisisant.com

3.4.2.4 Wildcard Values
A wildcard value of ‘?’ may be used in message definitions to allow more flexible matching than an exact
match. The wildcard value on its own denotes matching of any value for that entire byte (ie: “don’t care”).
If the wildcard value is indicated with a specific byte value, the response is matched bitwise against only
the high bits of the specified value. For Example:

 [40][00][01][?] indicates the application shall wait for any RF channel event on channel 0.

 [40][00][01][?B0] this line will pass if the last byte of the incoming response matches

1x11xxxx (0xB0) where x means “don’t care”.

Some examples of valid read commands using wildcards:

w [4E][00][84][FF][51][21][A6][24][0B][48] #Broadcast random data packet on ch0

r [40][00][01][?] #Wait for any RF Event

w [4D][00][54] #Request Capabilities from ANT

r! [54][?][?][?][?09][?][?] #Check to make sure that the device has the

 #CAPABILITIES_SEARCH_LIST_ENABLED

 #and CAPABILITIES_NETWORK_ENABLED bits set

#high in its advanced options

#(see pg 89 in Protocol and Usage document)

3.4.3 Pause Commands

Pause commands pause execution of the script for a specified period of time. They are called using the ‘p’
character followed by an integer number representing the time to wait (or pause) in milliseconds. The
response buffer is cleared after each ‘p’ command when the script is resumed. This means that
immediately after a ‘p’ call, an ‘r’ call will fail as no data will be available in the buffer for the ‘r’

command to compare. Because of this behavior, the ‘p’ command can also be used to manually clear the
response buffer:

w [4E][00][84][FF][51][21][A6][24][0B][48]

p1000 # Pause script engine for 1s

#(ANT will Tx above data for 1s)

w [4E][00][23][FA][B4][15][06][88][00][CC] #Broadcast another random data packet on
ch0

r [4E][?][?][?][?][?][?][?][?][?] #Wait for any broadcast packet from the

#slave.

p0 #clears response buffer

In this example, the read command indicates that the script wait for a broadcast data message. If no data
is received, the ‘r’ command will timeout after 5s. During this time, the response buffer may have

accumulated multiple serial messages that will not be cleared when the ‘r’ command times out. As such,

the script should clear the response buffer to prevent future ‘r’ calls from reading this data. ‘p0’ on the

final line clears the response buffer quickly so that future ‘r’ commands will behave reliably.

AN17 7 of 13

 thisisant.com

3.4.4 PauseBreak Commands

The AutoANT script engine can be forced to halt processing by using the ‘pauseBreak’ command. The
behavior of a pauseBreak is identical to that of a user manually pressing the ‘pause’ button. This allows a
script to be used in scenarios that require user input, or that require another script/application to execute.
To resume from a pauseBreak command, use the Resume button in the ANTware AutoANT tool.

oPress Resume to Continue

pauseBreak # Pause script engine until user resumes

3.4.5 Loop and Loopend Commands

The ‘loop’ and ‘loopend’ commands are used to implement loop functionality. The ‘loop’ command
indicates the start of the loop and is followed by the desired number of iterations; the loopend command
indicates the point at which the script engine should loop back to the beginning. This example implements
nested loops.

loop(3)

 loop(10)

 w [4E][00][84][FF][51][21][A6][24][0B][48]

 r [40][00][01][03]

 loopend

 oPress Resume to Continue

 pauseBreak

loopend

8 of 13 AN17

 thisisant.com

4 Example Script

The following script can be copied and pasted into an autoANT .ants file, and will work with ANTware II.
This script properly implements elements from Section 3, however it is not meant to perform any specific
task other than to transmit meaningless data according to the scheduling in the script .

###ANT_SCRIPT_VERSION: 0.01

o***

oThis text will be displayed in the script output field

o***

#############WRITE AND READ EXAMPLE############################

w [42][00][10][00] # Assign ch0, bidir master, netwk0

r [40][00][42][00] # Wait for RESPONSE_NO_ERROR (default timeout = 3s)

w [51][00][E9][03][2B][05] #Set Channel ID. Dev# 1001, DevType 43, TxType 5

r100 [40][00][51][00] #Wait for RESPONSE_NO_ERROR (100ms response timeout)

r5000 #Set default timeout to 5s

#############CRITICAL RESPONSE EXAMPLE###########################

w [43][00][00][20] #Set Channel Period: (8192/32768) = 4Hz

r! [40][00][43][00] #Wait for RESPONSE_NO_ERROR (Critical response 5s timeout)

w [45][00][42] #Set Channel RF Frequency

r!300 [40][00][45][00] #Wait for RESPONSE_NO_ERROR

#(Critical response 300ms timeout)

w [4B][00] #Open Channel 0

r [40][00][4B][00] #Wait for RESPONSE_NO_ERROR (response timeout = 5s)

#############WILDCARD EXAMPLE##################################

w [4E][00][84][FF][51][21][A6][24][0B][48] #Broadcast random data packet on ch0

r [40][00][01][?] #Wait for any RF Event

w [4D][00][54] #Request Capabilities from ANT

r! [54][?][?][?][?09][?][?] #Check to make sure that the device has the

 #CAPABILITIES_SEARCH_LIST_ENABLED

#and CAPABILITIES_NETWORK_ENABLED bits set

#high in its advanced options

#(see pg 89 in Protocol and Usage document)

AN17 9 of 13

 thisisant.com

#############PAUSE EXAMPLE######################################

w [4E][00][84][FF][51][21][A6][24][0B][48]

p1000 # Pause script engine for 1s

#(ANT will Tx above data for 1s)

w [4E][00][23][FA][B4][15][06][88][00][CC] #Broadcast another random data packet on
ch0

r [4E][?][?][?][?][?][?][?][?][?] #Wait for any broadcast packet from the

#slave.

p0 #clears response buffer

#############PAUSEBREAK EXAMPLE##################################

oPress Resume to Continue

pauseBreak # Pause script engine until user resumes

#############LOOP EXAMPLE##

loop(3)

 loop(10)

 w [4E][00][84][FF][51][21][A6][24][0B][48]

 r [40][00][01][03]

 loopend

 oPress Resume to Continue

 pauseBreak

loopend

10 of 13 AN17

 thisisant.com

5 Producing a Script

5.1 Manual Script Generation

To manually create a script, the user must be familiar with ANT message protocol and usage, as well as
the desired ANT serial message sequence to reproduce. The user may use the AutoANT scripting elements
discussed in section 3 to create custom scripts in any plain text editor.

When manually writing AutoANT scripts, the user must consider which fields of the ANT serial message to
include. Figure 5-1 illustrates the ANT serial message format. Refer to the ANT Message Protocol and
Usage document for a full description of all ANT serial messages and their respective formats . AutoANT
scripting only requires the Message ID and Message Content bytes as outlined in green. The SYNC,
Message Length and Check sum fields are NOT required.

Figure 5-1. AutoANT Script Message Bytes

When manually creating scripts, the user must consider the presence and timing of any associated
response messages. For example, if the user requires that the script continue regardless of responses,
omitting ‘r’ commands may be an appropriate solution. However, if the user requires the script to

interact with the ANT chip and be aware of any response messages, the read commands should be used.

AN17 11 of 13

 thisisant.com

5.2 Automatic Script Generation

Scripts can also be generated automatically using log files from any ANT PC application with logging
capabilities, such as ANTware II or SimulANT+. When logging is enabled, the ANT PC application creates
a text log file named DeviceX.txt, where ‘X’ is the USB port number used for the connected ANT device.
The default location of the log file depends on the application; please refer to the corresponding user
manual for details.

To generate the AutoANT script, the log can be processed using the AutoANT device log parsing tool. This
tool is a perl script that comes bundled with this application note. To download this tool again, visit
http://www.thisisant.com/developer/resources/downloads/ and choose AN17 AutoANT Scripts. Perl must
be installed to run the script, and is available through many online resources.

The following example uses a SimulANT+ log file to automatically generate an AutoANT script.

Steps:

1. Open and configure SimulANT+ to transmit the desired data. A device log will be generated in the
working directory of the application. Figure 5-2 shows an example of the SimulANT+ having been
used to configure and open a channel, transmit HRM data, and close the channel.

Figure 5-3 shows an example log generated while simulating a heart rate sensor. Comments and
whitespace have been added to help clarify the output. Note that the network key is blanked. Do
not modify the device log, other than to replace the blank network key with the ANT+ network
key. Modifying the device log may lead to unpredictable result s.

Figure 5-2. SimulANT+

http://www.thisisant.com/developer/resources/downloads/

12 of 13 AN17

 thisisant.com

Figure 5-3. Simulator Device Log

2. Move the log file into the same folder as the parsing tool. It is helpful to rename the log file to
something meaningful, however for simplicity the files have not been renamed in this example.

3. Use the parsing tool to extract the body of data from the text file, and produce an .ants file. This
is done by:

a. Opening a command prompt

b. Navigating to the folder containing the parser and log file

c. Using the following command:

perl parse_AutoANT.pl [logFileName].txt >[outputFileName].ants

The ‘>’ character tells the parsing tool to output to a file. Using ‘>>’ will append the output to the
designated file. The resulting .ants file will not contain the commands to conf igure, open, or close a
channel. Configuration commands are omitted in this example script as the intent is to reproduce over the
air data only. As such, this script should be executed over a preconfigured channel that is already open in
ANTware II or other applicable program.

AN17 13 of 13

 thisisant.com

Figure 5-4. Using the Parsing Tool

4. Add the version tag to the top of the file. Any additional script information including messages,
comments, or text output may now be edited manually.

Figure 5-5. Parser Output and Completed Script

6 Closing Remarks

This application note describes AutoANT Script elements , formatting and generation. If any of the
concepts presented in this application note are unclear or for any further inquiries, please go to
www.thisisant.com

file://dsifs/dsi/wireless/Docs/App%20Notes/In%20Progress/D00001512%20-%20ANT%20ANxx%20-%20AutoANT%20Scripts/www.thisisant.com

	1 Introduction
	1.1 AutoANT Script Overview

	2 Relevant Documents
	3 Script Elements
	3.1 Version Tag
	3.2 Script Code Comments
	3.3 Printing to Output
	3.4 Commands
	3.4.1 Write Commands
	3.4.2 Read Commands
	3.4.2.1 Response Buffer
	3.4.2.2 Response Timeout
	3.4.2.3 Critical Response Flag
	3.4.2.4 Wildcard Values

	3.4.3 Pause Commands
	3.4.4 PauseBreak Commands
	3.4.5 Loop and Loopend Commands

	4 Example Script
	5 Producing a Script
	5.1 Manual Script Generation
	5.2 Automatic Script Generation

	6 Closing Remarks

