A Comparison of Bluetooth and ANT for Mesh Networking Applications

Harrison Chin, P.Eng., Senior Field Applications Engineer ANT Wireless

What is "ULP" and why is it important in IoT?

- Ultra Low Power
 - mA to nA
 - AA's to coin cell batteries
 - Weeks to years of battery life

What is "ULP" and why is it important in IoT?

- Ultra Low Power
 - mA to nA
 - AA's to coin cell batteries
 - Weeks to years of battery life
- First battery costs pennies...

What is "ULP" and why is it important in IoT?

- Ultra Low Power
 - mA to nA
 - AA's to coin cell batteries
 - Weeks to years of battery life
- First battery costs pennies...
- Second battery can cost hundreds...

What did ULP wireless networks look like before?

- Local area networks
- Several sensors connecting to a phone
- A couple dozen devices to a Wi-Fi gateway/router

What do ULP wireless networks look like now and why?

- Big Star Networks
 - More information points
 - Adding more sensor types
- Ad-hoc Networks
 - Sensors moving in and out of spatial areas
- Deep Learning
 - Neural networks require big data to be effective

What challenges are we seeing with new applications?

- Hundreds of wireless nodes in a single room
- Latency, bandwidth and cost
- Commissioning complexity

What's commonly used so far?

- Wi-Fi
- Zigbee
- Thread
- Bluetooth Mesh

What is Bluetooth Mesh optimized for?

- Optimized for latency
 - Small payload packets
 - Control focused lighting mesh model
 - Multi-cast flood routing
 - Rapid re-transmission of new messages
- Low-cost hardware
 - Re-use BLE Physical and Transport Layers
 - Ubiquitous consumer support
- Multiple application re-use
 - Multiple mesh models and elements over the same network

Control Focused

Control Focused

3rd Party Testing (SiLabs) - ~60x35m

Round-trip Latency Testing – 192 Node Network

Latency (milliseconds)

Round-trip Latency Testing – All Relay Role

Bluetooth Mesh Latency 240 Node Network - All Relays 8-byte Payload

Latency (milliseconds)

What about strategically placed relays?

Round-trip Latency Testing – 1/6 Relay Role

Bluetooth Mesh Advertising Time Domain

GATT services		Mesh models		
GAP		Access		Bluetooth Low Energy
			Provisioning	Bluetooth Mesh
GATT	Security Manager	Transport		
ATT		Network		
L2CAP		Bearer		

Bluetooth Mesh Elements and Models

Bluetooth Mesh Asymmetric Topology

Will it benefit from Bluetooth 5.0?

- Advertising Extensions
 - Lowered mesh format overhead
 - Increased node-to-node bandwidth for large data packets
 - Increased latency for small data packets

Will it benefit from Bluetooth 5.0?

- Long Range Coded PHY
 - Reduced number of hops
 - Decreased latency for small data packets
 - Decreased node-to-node bandwidth

Bluetooth Mesh

- Low-latency for infrequent, small packets
- Mesh models defined for on/off, luminance, etc
- Supports mutually distrusted applications operating over a single transport
 - Layered architecture
 - Multiple levels of encryption
 - Required provisioning for key allocation and distribution

What is ANT BLAZE optimized for?

- Optimized for throughput
 - Time-synchronized transmission intervals
 - Group polling
 - Parallel data generation
 - Multi-broadcast flood routing
 - "C10K" Problem for Wireless
- Low-cost hardware
 - Supported by similar Bluetooth physical layer
 - Hundreds of millions of devices worldwide including cellphones
- Low-cost deployment
 - All nodes are routers
 - Application-controlled static addressing

ANT Time Domain Adaptation

What is BLAZE targeting?

- Aggregate Network Bandwidth
- Consistent Network Latency
- Total Costs
 - Flash and RAM Size
 - Development and Deployment Time
 - Radio Hardware

Data Focused

Data Focused

Either/or? Why not more than one!

- BLAZE, a Bluetooth-enabled ANT Mesh
- nRF52-based
 - BLE Peripheral Edge Connections
 - ANT-Powered Backbone
 - Concurrent ANT/BLE Examples in Nordic SDK

Case Study

- 300+ Nodes in a Building
- Receive Data Within 2 Minutes
- Coexist With Other Wireless

ANT BLAZE – Sample Use Cases and Test Results

- For the following examples, an ANT BLAZE network was established in an office • environment with cubicles and enclosed offices.
- Different network sizes and application payloads were tested to measure throughput, • success rate and the average time to poll all nodes.
- A group polling approach was used to query 20 nodes at a time.
- Performance is dependent on parameters such as # of nodes in a network, node density, message size and whether frequency diversity enabled.
- Definitions:
 - number of bytes received from all ping responses throughput =

total time for all responses success rate = $\frac{\text{number of ping responses received}}{\frac{1}{2}$

total number of ping requests

Test Results – Low Density

*Dimensions Approximate

Scenario 300 nodes	Success rate (%)	Average throughput (bytes/sec)	Average time to poll all nodes (sec)
Single frequency	99.50	147.01	26.1
Frequency Diversity	99.679	60.75	41.5

Test Results – High Density

BLAZE Broadcast Time Domain

Focused on Developer Productivity

- Lightweight BLAZE Mesh API
 - 14 Function Calls
- Direct Support
- Library-based Solution

Focused on Developer Productivity – BLAZE API

- ant_blaze_node_init(...);
- ant_blaze_node_config(...);
- ant_blaze_node_start(void);
- ant_blaze_node_stop(void);
- ant_blaze_node_process_channel_event(...);
- ant_blaze_node_process_timeout(void);
- ant_blaze_node_send_message(...);
- ant_blaze_node_get_version_string(...);
- ant_blaze_node_get_current_scan_frequency(...);
- ant_blaze_node_get_number_of_nodes_in_range(...);
- ant_blaze_node_get_current_channel_period(...);
- ant_blaze_node_add_to_group(...);
- ant_blaze_node_remove_from_group(...);
- ant_blaze_node_remove_from_all_groups(void);

Focused on Developer Productivity - MVP

- ant_blaze_node_init(...);
- ant_blaze_node_config(...);
- ant_blaze_node_start(void);
- ant_blaze_node_stop(void);
- ant_blaze_node_process_channel_event(...);
- ant_blaze_node_process_timeout(void);
- ant_blaze_node_send_message(...);
- ant_blaze_node_get_version_string(...);
- ant_blaze_node_get_current_scan_frequency(...);
- ant_blaze_node_get_number_of_nodes_in_range(...);
- ant_blaze_node_get_current_channel_period(...);
- ant_blaze_node_add_to_group(...);
- ant_blaze_node_remove_from_group(...);
- ant_blaze_node_remove_from_all_groups(void);

All Nodes are Relays

- Easy deployment for installers
- All nodes improve wireless coverage area
- All nodes improve the user endpoint access

Continuous Innovation – Current and Future Updates

- Device Firmware Updates
 - SoftDevice 4.0.5 On-chip coexistence
 - Smarter polling+async data generation
- 2 Mbps PHY
 - BLAZE benefits from increased node density
- Extended Broadcast Packets
 - Reduced mesh overhead

ANT BLAZE

- High throughput for large numbers of parallel nodes
- Role-less, stateless architecture for simple deployment
 - Increased node numbers improve wireless coverage area
 - Increased node numbers improve user access points
 - Flexible node addressing for bespoke solutions
- Minimal API surface area
 - Easier to grok
 - Faster development effort
 - Reduced refactoring for future product updates

Bend the Curve – Choose the Right Tool for the Job

- Different technologies make different trade-offs
- You don't have to choose only one
 - Multi-protocol chipsets
 - Nordic SDK support
- Better products in a competitive market

Harrison.Chin@ThisIsAnt.com

