SANT

Flexible & Interoperable
Data Transfer (FIT)
Protocol

Page 2 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

Copyright Information and Usage Notice

This information disclosed herein is the exclusive property of Dynastream Innovations Inc. No part of this publication may
be reproduced or transmitted in any form or by any means including electronic storage, reproduction, execution or
transmission without the prior written consent of Dynastream Innovations Inc. The recipient of this document by its
retention and use agrees to respect the copyright of the information contained herein.

The information contained in this document is subject to change without notice and should not be construed as a
commitment by Dynastream Innovations Inc. unless such commitment is expressly given in a covering document.

The Dynastream Innovations Inc. ANT Products described by the information in this document are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended
to support or sustain life, or for any other application in which the failure of the Dynastream product could create a situation
where personal injury or death may occur. If you use the Products for such unintended and unauthorized applications, you
do so at your own risk and you shall indemnify and hold Dynastream and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Dynastream was negligent regarding the design or manufacture of the Product.

©2014 Dynastream Innovations Inc. All Rights Reserved.

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4

Revision

1.0
il
1.2

1.3
1.4

1.5

1.6
1.7
1.8

1.9
2.0

2.1

2.2

2.3
2.4

Effective Date

May 2010
March 2011
April 2011

April 2012
February 2013

February 2014

May 2014
August 2014
October 2015

April 2016
May 2016

June 2016

August 2016

November 2016
March 2019

Revision History

Initial Release
Updated License

Description

Updated File Header Information

Corrected Compressed Timestamp header description

Page 3 of 45

Corrected minor errors in documentation (omissions, typos, incorrect data)

Updated template

Updated agreement
Clarified global profile usage

Clarified FIT basetype definitions

Clarified Arrays

Clarified Subfields
Clarified Common Fields

Updated template

Clarified Components
Clarified Scale/Offset Usage
Added chained FIT files
Added Plugin Framework
Added Developer Data
Release for FIT 2.0

Corrected Errors in Developer Data

VirbX Plugin

Corrected some Typos

Add Invalid Values for 64-bit integer types

Add Description of Native Overrides in Developer Data

Clarify Native Overrides in Developer Data
Remove 255 byte message size limitation

SBANT

thisisant.com

Page 4 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

Table of Contents

Introduction 8
Related Documents 9
Overview of the FIT File Protocol 10
700 N I o) PR 10
3.1.1 GIlODAI Profile ..uveisiiriieiiisiis i 11
3.1.2 Product Profileuieiiiiciii i 11

3.2 FIT File Protocol
3.3 FIT File Structure

3.3.1
3.3.2
3.33
334
4 Record Format 17
L R S T=Too o I (== T L= = Y (TN 17
4.1.1 NOIMEl HEAAEN ... viii ittt 17
4.1.2 Compressed TimeStampP HEAAENooiccieeiiee e r e r e e s s e e e e s s s nrrn e e e e e eeenan 19
L8 (=T) s [31 o PN 22
4.2.1 DTy o] T 1=t o TN 22
4.2.2 DT = oY T N 27
4.3 FIT FilE EXAMPIE.. . eeteeiiiiiieiieieiee et e e e s st e e e s e s e e e e e e s s s s e e e e e e e e e s s snneeeeaeesaasnraneeeessennnrnneeeeasannnn 28
4.3.1 Record 1 (definition message: ‘file_id" (mesg_num = 0X00))ccoeerrrrreeeeeiriinrreeee e e seerreeee e s ssnnees 29
4.3.2 Record 2 (data message: *file_id" (Iocal mSg type = 0)).....uuururmrmrmrmrmmmmmrnrnnnrnrnrnrnrnrsrnrsrnrnnsrsrnnn.. 29
4.3.3 Record 3 (definition message: ‘dev_data_id’ (mesg_num = OXCF)).......ccccivurmmmmmmmmnmmmmmnrmnnnnnnnnnnnnnne 29
4.3.4 Record 4 (data message: ‘dev_data_id’ (Iocal msg type = 0)) ...cooecverreeeiiiiciirreeee e 30
4.3.5 Record 5 (definition message: ‘field_description’ (mesg_num = OXCE))ccccceerersirsinrneeneneesssnens 30
4.3.6 Record 6 (data message: *field_description’ (local msg type = 0))uuvvrmrmrmrmrmrmrmmmmnrnrninnnnrnn.. 30
4.3.7 Record 7 (definition message: ‘record’ (mesg_num = 0X14))uuururmrmrmmmmmrmmmmmmmmmmnrnnnrnrnrnrnnnnnmnnnnns 30
4.3.8 Record 8 (data message: ‘record’ (Iocal MSg tyPe = 0)) c.uvuvrreeeiriiiiirrrereeesesnrreee e e s s sssnrreeee e s snneees 31
4.3.9 Record 9 (data message: ‘record’ (Iocal msg type = 0)) ...occveeriiiririiiiiiniiren e

4.3.10 Record 10 (data message: ‘record’ (local msg type = 0))

L S S r= 11 @ 1= R
4.5 DYNAMIC FIEIAS ..eveiiiieiiiciiiie it e e s e e e nn s 34
L T 0] .50 =" N 35
4.7 Common Fields (Field#, Field Name, Field TYDPE)......ccuuuiiaiiirereeeeeeeaireeeee e e e s s e e e e s s s e e e e e e e s e smneee e e e e eenan 36
4.7.1 Message Index (Field # = 254, message_index, message_iNdeX)........ccccervrurmrmrnmmrnrnmmmmmnmnmnnnnnnnnnnnns 36
4.7.2 Timestamp (Field # = 253, timestamp, date_time)........ccccvviiiiiniiiinii e, 36
4.7.3 Part Index (Field # = 250, part_indeX, UINE32)cccoviiiiiiiiiiniiie e e e 36
4.8 BESE PraCliCES......ccuuereeeiiii ittt 37

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 5 of 45

4.8.1 File ID MESSAGES ..vuuurururunurunnnurunnnanssnsssnsssnsnsnne 37

4.8.2 DefiNing Data MESSAGESuuuerreeeiriairereeeaaeessarereeeaesssaarsreeeeesssassnseeeeeessaaasnseeeeesssasnsnnnneeeessassnnnnes 37

4.8.3 Re-defining LOCAl MESSAGE TYPES. .. .uuurerreeeeeeraarereeeaesssaasnnereeessssasnneeesesssaassnseeesssssasssnsenesesssasannnees 38

5 FIT Message Conversion 39
5.1 COMPALIDIlITY coieieieic e 40

5.2 Common FIT File APPICALIONSeeeeieiiieiiieeiee e e e e e s s e e e e s s e e e e e e e s e n e e e e e e e e s snnnnn e e e e s e s s nnnnneneens 40

6 Plugin Framework 40
6.1 PIUGIN ArChItECEUIE .oieiiieiii et e e e e e e s e e e e e e e e e e et e e e s e r e e e rer e e e rarnrees 40

6.2 PlUgin EXamPIE (HR)..iiiiiiiiiiiiiiiiiiiiiiiieiiieieie e is s s s s s e s s s s e s s e e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e s e e e s e neseneneneseeenenenens 42

6.3 Three D Sensor Adjustment Plugin Explanation and EXample............ccoeeiiiioimiieeieenieeeee e ee e 43

L

SBANT

thisisant.com

Page 6 of 45

Flexible and Interoperable Data Transfer Protocol Rev 2.4

List of Figures

Figure 1-1. Data flow between devices using FIT ProtoCol..........ccovureeririiiiiirnmeiesssssiinneees s s sssssseeesssssssssnnnns 8
Figure 3-1. BasiC FIT File COMPONENES.....iiiiiiiiiiiiiiiiieiirirerererererererererererererersrererersrsrsrsrsrerererererererererererereen 10
Figure 3-2. Components of Global and Product FIT Profilesceeeeiiriimmmieee e eeeeeee e 10
Figure 3-3. FIT message, field and base type StrUCTUIre..........ooeeieieie e 11
Figure 3-4. Overview of the FIT File ProtoCol......c.ciiiciiiuiieeieisiiiiiiiriees s ssisne e s s e s s s sssnnre e e s s s sssnnnnes 12
Figure 3-5. (a) The FIT file structure (b) Data RECOrd typPeS......cccvrrrrriiiiiiiirriree e ssirrre e e sssrnrre e e esnnnes 13
Figure 3-6. Definition message assigns Global FIT message to local message 0ccccceveerriiimeeeeeeenesennnns 15
Figure 3-7. Chained FIT fil€S......cuiiiiuriiiiiiieiiiiiis i e 16
Figure 4-1. Normal Headers: example definition and data messages..........uvvivieieieieieieieieieieieieieieceeereeeneeeeen 19
Figure 4-2. Compressed Timestamp Header EXample.......uuiviviiiiiiiiieieieieieieieieieresesesesssesesssssesesssessssssesseseeee 21
Figure 4-3. Definition Message SErUCTUIEcciiiiiiiiiiii i e 22
Figure 4-4. Definition Message with Developer Data StruCture.........cccviivieiiiiin i s 22
Figure 4-5. Data MeSSage SLIUCTUIEviiiiiiiiiiiiiiieieierere s e e e e e er e s e s e s e s e s e e rerere s e s e s e reserererererereresesereneresesnnnnnnnns 27
Figure 4-6. Definition and data message eXampPle........cuiviviiieieieiiiiieieieierererere e e reeeeeeen 28
Figure 4-7. Sample Dynamic Fields in the 'Event' MESSageccvvvuriiniiiieniniiis e 34
Figure 4-8. Example Components in the 'Event’ MESSagecccviviriiniiiinnniiis e 35
Figure 4-9. Example CompoNnent EXPANSIONccvvvieieiereriremerererererere. 36
Figure 4-10. Best Practice for Defining Data MESSAGES.cvvivieieieieriieieieiereiererererererererererererereserereseeeeeeeeenee 37
Figure 4-11. Redefining local message type within a single FIT file

Figure 5-1. Conversion Of @ FIT MESSAGEceviiuriiiiiiriiiiiiie st isir s s s
Figure 6-1 Plugin Architecture BIOCK Diagramcieiiriiiiereieieieieieeeiereeererereresererereeerereresererererererererererereren 41

SANT

thisisant.com

file://///cochranefs/Wireless/ANT+_Managed_Networks/ANT+%20Documents/ANT+%20Doc%20-%20FIT%20SDK/FIT%20Protocol%20Document/D00001275%20Flexible%20&%20Interoperable%20Data%20Transfer%20(FIT)%20Protocol%20Rev%202.3.docx%23_Toc465845323
file://///cochranefs/Wireless/ANT+_Managed_Networks/ANT+%20Documents/ANT+%20Doc%20-%20FIT%20SDK/FIT%20Protocol%20Document/D00001275%20Flexible%20&%20Interoperable%20Data%20Transfer%20(FIT)%20Protocol%20Rev%202.3.docx%23_Toc465845323
file://///cochranefs/Wireless/ANT+_Managed_Networks/ANT+%20Documents/ANT+%20Doc%20-%20FIT%20SDK/FIT%20Protocol%20Document/D00001275%20Flexible%20&%20Interoperable%20Data%20Transfer%20(FIT)%20Protocol%20Rev%202.3.docx%23_Toc465845323
file://///cochranefs/Wireless/ANT+_Managed_Networks/ANT+%20Documents/ANT+%20Doc%20-%20FIT%20SDK/FIT%20Protocol%20Document/D00001275%20Flexible%20&%20Interoperable%20Data%20Transfer%20(FIT)%20Protocol%20Rev%202.3.docx%23_Toc465845327
file://///cochranefs/Wireless/ANT+_Managed_Networks/ANT+%20Documents/ANT+%20Doc%20-%20FIT%20SDK/FIT%20Protocol%20Document/D00001275%20Flexible%20&%20Interoperable%20Data%20Transfer%20(FIT)%20Protocol%20Rev%202.3.docx%23_Toc465845327
file://///cochranefs/Wireless/ANT+_Managed_Networks/ANT+%20Documents/ANT+%20Doc%20-%20FIT%20SDK/FIT%20Protocol%20Document/D00001275%20Flexible%20&%20Interoperable%20Data%20Transfer%20(FIT)%20Protocol%20Rev%202.3.docx%23_Toc465845327

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 7 of 45

List of Tables

Table 3-1. Byte Description Of File HEAAENccoei i e e e e s e 14
Table 4-1. Normal Header Bit Field DeSCHPIONciviviviiiiiiieieieieieieisierersierersresssssesessnsseserssssssssssesesssesenenenens 17
Table 4-2. Compressed Timestamp Header Bit Field DeSCHPLiONciviviiiiieiiiiiiieieieieieierereieierersrenesesesssesenen 19
Table 4-3. Definition Message CONTENTS.ueeiiiiiiiiiiereiee e e e e eererrr e e e e s s s ssnrre e e e e e e s s snrnne e e e e s e ssannneeeeesssssnnnnnes 23
Table 4-4. Field Definition CONTENEScicviiiiiiiriiiiii i 23
Table 4-5. Base TYpe Bit FIeldcciviiiiiiiiiiiiiiiiiieiieisiiie s s e e s e e s s s s e e s e se s s s s sesenens 24
Table 4-6. FIT Base Types and Invalid ValUESccciviviiiiiiiiiiiiiiiciiicieieieisseisssserenssesesssssssssssssssssssssesenens 24
Table 4-7 — Developer Field DESCIIPLIONueeiiiiiiiiieeeieeeeeeeeerre e e e e e s s ssnrre e e e e s e s s ssnnne e e e e s s s s snnneeeeesssesnnnnnes 25
Table 4-8 - Developer Data ID MESSAGEcuiivrriiiiiiiieiiiiiis i e e 25
Table 4-9 - Field DeSCription MESSAGES.......uiviiiiieieiiiiieieieieieieieisierere et e et e s e e rerersreserereserennnen
Table 4-10. Example Field Featuring Both Scale and Offset....

Table 4-11. Altitude Field Value ENCOAINGccriviiiiiiiiiiie i e e e
Table 5-1. COMMON FIT FIlE TYPES. . ueeiiiiiiiiurrrereesiessarrnreeeessssssnrreesessssssssseeeesssssssnsnnseessssssssnnnsesessssssnnnnes 40

SBANT

thisisant.com

Page 8 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

1 Introduction

The Flexible and Interoperable Data Transfer (FIT) protocol is a format designed specifically for the storing and sharing of
data that originates from sport, fitness and health devices. It is specifically designed to be compact, interoperable and
extensible. This document will describe the FIT file structure and interpretation.

The FIT protocol defines a set of data storage templates (FIT messages) that can be used to store information such as user
profiles and activity data in files. Any FIT-compliant device can interpret a FIT file from any other FIT-compliant device. A
software development kit (SDK) is provided to generate code and libraries specific to a product’s requirements. The SDK
enables efficient use of a binary format at the embedded level, to significantly reduce the development effort and allow for
rapid product development.

The following example use case illustrates how the FIT protocol is used to transfer personal monitoring information acquired
during exercise to an internet database (Figure 1-1):

1. ANT+ Sensors measure parameters such as heart rate and running speed

2. Data is broadcast in real time, using interoperable ANT+ data formats

3. Session events and real time activity data is collected and saved into a FIT file on a display device
4. The FIT file is transferred to the PC using ANT File Share (ANT-FS)

The FIT data may be used directly on the PC or transferred to internet applications

T
' o % ’:t\ o
ORI N
g»_,*‘\\?‘;\n;g- o -\\l M ::@
ANT+ INTERNET
Broadcast ANT-FS Share user profile
and activity data

ANT USB

0 o O Use data on

PC Applications

SENSORS DISPLAY DEVICE PERSONAL COMPUTER

Figure 1-1. Data flow between devices using FIT protocol

After the initial wireless sensor data is collected, the FIT protocol provides a consistent format allowing all devices in the
subsequent chain to share and use the data.

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 9 of 45

The FIT file protocol was designed to provide:
e Interoperability of device data across various device platforms
e Scalability from small embedded targets to large web databases
¢ Forward compatibility, allowing the protocol to grow and retain existing functionality
e Automated compatibility across platforms of different native endianness
The FIT file protocol consists of:
e A file structure
e Aglobal list of FIT messages and FIT, fields together with their defined data types

e Software Development Kit (SDK) to configure target products and generate the necessary FIT code and libraries

2 Related Documents
The following supplementary documentation and files are provided in the SDK:

e FIT File Types Document
e FIT Global Messages and Fields (Profile .xls)
e FIT code generator
e FIT to CSV Conversion Tool
o Reference code examples
e Example FIT files
The following application note(s) provide documentation on certain advanced features of the SDK:
e AN18 FIT Globs

Many FIT applications will involve the ANT-FS protocol to facilitate the wireless transfer of FIT files. For further information
regarding ANT-FS and related details for transferring FIT files specifically, refer to the following documents:

e ANT File Share (ANT-FS) Technology

SBANT

thisisant.com

Page 10 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

3 Overview of the FIT File Protocol

A FIT file contains a series of records that, in turn, contain a header and content. The record content is either a definition
message that is used to specify upcoming data, or a data message that contains a series of data-filled fields (Figure 3-1).
The FIT protocol defines the type and content of messages, the data format of each message’s field, and methods of
compressing data (if applicable).

Record m : header Definition Message
Field 1 Field 2 Field 3 Field 4 Field 5
Record 7 header | Data Data Data Data Data
Field 1 Field 2 Field 3
Record o0: header Data Data Data

Figure 3-1. Basic FIT File components

3.1 FIT Profiles

There are two types of FIT profiles: global and product. All available FIT messages are outlined in the Global FIT Profile.
This is then broken down into smaller subset, Product Profiles, outlining product-specific FIT messages (Figure 3-2).

Global Profile

Available System
Configurations

ALL defined
FIT Messages

ALL defined
FIT Message Fields

ALL defined
base & FIT Data Types

Each profile consists of system configuration information, defined FIT messages and fields, base data types, and FIT data

types (Figure 3-2).

Product_1 Profile

Product_2 Profile

Product Configuration

Product Configuration

FIT Messages
(used in product_1)

FIT Messages
(used in product_2)

FIT Message Fields
(used in product_1)

FIT Message Fields
(used in product_2)

base & FIT Data Types
(used in product_1)

base & FIT Data Types
(used in product_2)

Figure 3-2. Components of Global and Product FIT Profiles

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 11 of 45

3.1.1 Global Profile

The Global FIT Profile is maintained by Dynastream and consists of the complete collection of available system
configurations, FIT messages, fields and data types as described below:

e System Configuration: Describes system parameters such as byte endianness and alignment. The FIT protocol
supports multiple system configurations

e FIT Messages: define the FIT fields contained within each FIT message
e FIT Message Fields: define the base type and format of data within each FIT field
e FIT Types: describe the FIT field as a specific type of FIT variable (unsigned char, signed short, etc)

New configurations, messages and data types may be added as new versions of the SDK are released. Users should not
modify existing definitions found in the global profile. Additions may be requested by contacting Dynastream at
www.thisisant.com.

The relationships between FIT messages, fields and base types are illustrated in Figure 3-3.

FIT message: Field 1 Field 2 Field 3 Field 4
e.g. record e.g. speed e.g distance e.g. time e.g. cadence
FIT Fi_3|d: Time field data format/base type
e.g. time e.g. date_time
Base TYPe: date_time: uint32 representing seconds since UTC
e.g date_time 00:00 Dec 31 1989

Figure 3-3. FIT message, field and base type structure

3.1.2 Product Profile

Not all messages defined in the global FIT profile will be relevant to a particular application. A Product Profile is an
application specific subset of the Global Profile that defines only the necessary data messages in the configuration of the
product’s architecture (Figure 3-2). An SDK is provided to allow the developer to select the desired system configuration
and relevant data messages and then generate application specific FIT code.

Custom messages may be defined in the manufacturer specific message range (0xFFO0-OxFFFE). Information contained in
manufacturer specific messages will not in general be interoperable, since other applications will not have knowledge of
them.

Two different FIT devices may use different product profiles or versions of the complete Global Profile. This may result in
one device receiving a FIT message that it does not recognize. When this occurs, the FIT file is maintained in its entirety
and any unrecognized messages are simply ignored by the decoder without interrupting the operation of the receiving
device, or causing any errors. Similarly, if a device does not receive data that it may expect, it will simply fill those fields
with an invalid value rather than creating errors. In this way, the FIT protocol will ensure compatibility across devices that
may not have the exact same profiles implemented. These compatibility processes are discussed in more detail in later
sections.

SBANT

thisisant.com

Page 12 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

3.2 FIT File Protocol

The FIT protocol defines the process for which profiles are implemented and files are transferred. Figure 3-4 provides an
overview of the FIT process. Typically, ANT+ broadcast data is collected by a display device. The display device would then
encode the data into the FIT file format according to its product profile (i.e. product profile 1). The FIT file is then
transferred to another device which would then decode the received files according to its own implemented product profile
(i.e. product profile 2).

Incoming Data: S > TRl oo File == Other FIT Devices
H Transfer
Settings, events, H
sensor data :
H
:
Product Profile 1 : Product Profile 2
FIT Encode E FIT Decode
Device specific ’ Compress data E . T Device specific
FIT messages P ! - Resolve Endianness FIT messages

- Reconstruct Timestamps
- Fill all message fields

- Unknown data ignored
FIT File - Missing data fields set to
“invalid” values

'

Structure or Object

Application

Encoding Devi Decoding Device
Figure 3-4. Overview of the FIT File protocol

|
Data Records

|
|
(FIT Messages) :

Incoming data such as settings, events and sensor data are written into FIT message fields according to the formats
defined by the device’s product profiles. The FIT encoding process is optimized, such that only valid fields are written to the
file. The file can then be transferred to another FIT device. When the data is used by the receiving device, it is decoded
according to its implemented product profiles, which relate the received FIT messages to the global FIT message list. The
decoded values will then be passed as structures or objects to the application.

The SDK code will resolve native endianness, reconstruct timestamp information and fill all message fields appropriately. If
there is a difference in profile version between the two devices, any missing data will be set to invalid or default values as
defined in the FIT protocol, and any unknown messages or data will be ignored. The FIT file is maintained in its original
form for transfer to other devices, if desired.

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 13 of 45

3.3 FIT File Structure

All FIT files have the same structure which consists of a File Header, a main Data Records section that contains the encoded
FIT messages, followed by a 2 byte CRC (Figure 3-5.a).

FIT Fil Record Header Record Content
lle (1 byte) (varying size)
Header e N - ™
(14 bytes) -7
________ mg;?:rl Definition Message
Data Records
|- Definition Messages Normal
|- Data Messages Header Data Message
(varying length)
Time Offset
________ Data Message
CRC —— Header
(2 bytes) T
(a) (b)

Figure 3-5. (@) The FIT file structure (b) Data Record types

3.3.1 File Header

The file header provides information about the FIT File. The minimum size of the file header is 12 bytes including protocol
and profile version numbers, the amount of data contained in the file and data type signature. The 12 byte header is
considered legacy, using the 14 byte header is preferred. The header size should always be decoded before attempting to
interpret a FIT file, Dynastream may extend the header as necessary. Computing the CRC is optional when using a 14 byte
file header, it is permissible to set it to 0x0000. Including the CRC in the file header allows the CRC of the file to be
computed as the file is being written when the amount of data to be contained in the file is not known.

Table 3-1 outlines the FIT file header format.

SBANT

thisisant.com

Page 14 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

Table 3-1. Byte Description of File Header

Byte Parameter Description Size
(Bytes)
0 Header Size Indicates the length of this file header including header size. Minimum 1
size is 12. This may be increased in future to add additional optional
information.
1 Protocol Version Protocol version number as provided in SDK 1
2 Profile Version LSB Profile version number as provided in SDK 2
3 Profile Version MSB
4 Data Size LSB Length of the Data Records section in bytes 4
5 Data Size Does not include Header or CRC
6 Data Size
7 Data Size MSB
8 Data Type Byte[0] ASCII values for “.FIT”. A FIT binary file opened with a text editor will 4
9 Data Type Byte[1] contain a readable “.FIT” in the first line.
10 Data Type Byte[2]
11 Data Type Byte[3]
12 CRC LSB Contains the value of the CRC (see section 3.3.2) of Bytes 0 through 2
13 CRC MSB 11, or may be set to 0x0000.
This field is optional.
3.3.2 CRC

The final 2 bytes of a FIT file contain a 16 bit CRC in little endian format. The CRC is computed as follows:

FIT UINT16 FitCRC Getl6 (FIT UINT16 crc, FIT UINT8 byte)
{ static const FIT UINT16 crc table[l6] =
{ 0x0000, 0xCCO01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401,
0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9CO01l, 0x8801, 0x4400
;;T_UINT16 tmp;

// compute checksum of lower four bits of byte

tmp = crc table[crc & 0xF];
crc = (crc >> 4) & OxOFFF;
crc = crc * tmp * crc_table[byte & OxF];

// now compute checksum of upper four bits of byte
tmp = crc_table[crc & 0xF];

crc = (crc >> 4) & OxOFFF;

crc = crc * tmp " crc_tablel (byte >> 4) & O0xF];

return crc;

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 15 of 45

3.3.3 Data Records

The data records in the FIT file are the main content and purpose of the FIT protocol. There are two kinds of data records:

Definition Messages — define the upcoming data messages. A definition message will define a local message type and
associate it to a specific FIT message, and then designate the byte alignment and field contents of the upcoming data
message.

Data Messages — contain a local message type and populated data fields in the format described by the preceding
definition message. The definition message and its associated data messages will have matching local message types. There
are two types of data message:

e Normal Data Message
e Compressed Timestamp Data Message

These messages will be further explained in section 4. All records contain a 1 byte Record Header that indicates whether the
Record Content is a definition message, a normal data message or a compressed timestamp data message (Figure 3-5.b).
The lengths of the records vary in size depending on the number and size of fields within them.

All data messages are handled locally, and the definition messages are used to associate local data message types to the
global FIT message profile. For example, a definition message may specify that data messages of local message type 0 are
Global FIT ‘lap” messages (Figure 3-6). The definition message also specifies which of the ‘lap’ fields are included in the data
messages (start_time, start_position_lat, start_position_long, end_position_lat, end_position_long), and the format of the
data in those fields. As a result, data messages can be optimized to contain only data, and the local message type is
referenced in the header. Data messages are referenced to local message type.

Global FIT Profile

FIT File
u
FIT - Definintion Message
msg \\ Local Msg 0 assigned to:
lap) Global FIT message “lap”
message_index 253 start_time, start_position_lat,
/’ timestamp 0 start_position_long, end_position_lat
,~ event L e v
7 event_type 2 e
,/ start_time 3 v
FIT start_position_lat 4
fields start_position_long 5 Local Msg O: Data Message
N end_position_lat 6 start_time, start_position_lat,
\\\ end_position_long 7 start_position_long, end_position_lat
N

Figure 3-6. Definition message assigns Global FIT message to local message 0

SBANT

thisisant.com

Page 16 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

3.3.4 Chained FIT files

The FIT protocol allows for multiple FIT files to be chained together in a single FIT file. Each FIT file in the chain must be a
properly formatted FIT file (header, data records, CRC).

FIT File FIT File

———————— 1 —_—— == = = = =
Header | Header I
(14 bytes) | (14 bytes) I
—_———— — — — — -/ | —_—————— —
Data Records : Data Records :
i, | o I

|- Definition Messages |- Definition Messages
|- Data Messages : . . . |- Data Messages :
(varying length) : (varying length) :
———————— 4 -
CRC I CRC |
(2 bytes) | (2 bytes) |
________ | — — — — — — — — —]

Figure 3-7. Chained FIT files

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 17 of 45

4 Record Format

A FIT record consists of two parts: a Record Header and the Record Content. The record header indicates whether the
record content contains a definition message, a normal data message or a compressed timestamp data message. The
record header also has a Local Message Type field that references the local message in the data record to its global FIT
message.

4.1 Record Header Byte

The Record Header is a one byte bit field. There are actually two types of record header: normal header and compressed
timestamp header. The header type is indicated in the most significant bit (msb) of the record header. The normal header
identifies whether the record is a definition or data message, and identifies the local message type. A compressed
timestamp header is a special compressed header that may also be used with some local data messages to allow a
compressed time format.

4.1.1 Normal Header

A value of 0 in Bit 7 of the record header indicates that this is a Normal Header. The bit field description for a normal
header is shown below in Table 4-1.

Table 4-1. Normal Header Bit Field Description

Bit Value Description
7 0 Normal Header
Oor1 Message Type

1: Definition Message
0: Data Message

5 0 (default) Message Type Specific
0 Reserved
0-3 0-15 Local Message Type

4.1.1.1 Message Type
The message type indicates whether the record contains a definition or data message.

4.1.1.2 Message Type Specific
The value in bit 5 of a normal header changes based on if we are writing a Definition or Data Message

4.1.1.2.1 Definition

If the bit is set the message contains extended definitions for developer data. The details of developer data are highlighted
in section 4.2.1.5.

4.1.1.2.2 Data

Reserved in data messages and should be set to 0.
4.1.1.3 Data Message Header

4.1.1.4 Local Message Type

The Local Message Type is used to create an association between the definition message, data message and the FIT
message in the Global FIT Profile.

SBANT

thisisant.com

Page 18 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

Definition Message: In a definition message, the local message type is assigned to a Global FIT Message Number
(mesg_num) relating the local messages to their respective FIT messages

Data Message: The local message type associates a data message to its respective definition message, and hence, its'
global FIT message. A data message will follow the format as specified in its definition message of matching local message

type.

Local Message Types can be redefined within a single FIT file, please refer to section 4.8.3 for best practices when
using a single local message type for different records.

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 19 of 45

Example:

Figure 4-1 shows an example of using data records with normal headers to designate definition and respective data
messages for recording FIT ‘record’ and ‘lap’ messages.

MNormal Header
l7 J Resarve Bit
01 0

0

Local Msg Type O = FIT message "Record”

Record 1 0000 Definition Message: Fields included = Time, Speed, Distance

I
Definition %smgeJ L Local Message Type

Developer Data Flag

i) Local Msg Tvpe O (" Record™)
Recard 2: 0j0j0fojo 0 0 0] DataMessage: Time, Speed, Distance Field Data
Data I\f'le'_%“.age—f L Local Message Type
i] Local Msg Tvpe O ("Record™)
Record 3: 0/0/0/0/0 0 0 0| DataMessage: Time, Speed, Distance Field Data
. Definition Message Local Msg Type 1 = FIT message "Lap”
Recerd 4: 0j1/1j0 0001 w /Developer Data: Fields included = Speed, Distance, Developer Data Fields
) . Local Msg Type 1 ("Lap™)
Recard 5: ofojojojo o0 0 1 Data Message: Speed, Distance Field Data, Developer Data
i) Local Msg Tvpe O (" Record™)
Record ©: 0/0/0/0/0 0 0 0| DataMessage: Time, Speed, Distance Field Data
) . Local Msg Tvpe 1("Lap”)
Record 7 0 0/0/0 000 1| DataMessage: Speed, Distance Field Data
N J _
'
Record Header Record Content
{1 byte) {varying size)

Figure 4-1. Normal Headers: example definition and data messages

4.1.2 Compressed Timestamp Header

The compressed timestamp header is a special form of record header that allows some timestamp information to be placed
within the record header, rather than within the record content. In applicable use cases, this allows data to be recorded
without the need of a 4 byte timestamp in every data record. The bit field description of a compressed timestamp header is
shown in Table 4-2 below.

Table 4-2. Compressed Timestamp Header Bit Field Description

Bit Value Description

7 1 Compressed Timestamp Header
5-6 0-3 Local Message Type
0-4 0-31 Time Offset (seconds)

Note this type of record header is used for a data message only.

SBANT

thisisant.com

Page 20 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

4.1.2.1 Local Message Type

In order to compress the header, only 2 bits are allocated for the local message type. As a result, the use of this special
header is restricted to local message types 0-3, and cannot be used for local message types 4-15. The local message type
can be redefined within a single FIT file, please refer to section 4.8.3 for more details.

4.1.2.2 Time Offset

The five least significant bits (Isb) of the header represent the compressed timestamp, in seconds, from a fixed time
reference. The time resolution is not configurable. The fixed time reference is provided in the form of any FIT message
containing a full, four byte timestamp recorded prior to the use of the compressed timestamp header (see example). The
5-bit time offset rolls over every 32 seconds; hence, it is necessary that any two consecutive compressed timestamp records
be measured less than 32 seconds apart.

The actual timestamp value is determined by concatenating the most significant 27 bits of the previous timestamp value
and the 5 bit value of the time offset field. Rollover must be taken into account such that:

If Time Offset >= (Previous Timestamp)&0x0000001F (i.e. offset value is greater than least significant 5 bits of
previous timestamp):

Timestamp = (Previous timestamp)&0xFFFFFFEQ + Time Offset

If Time Offset < (Previous Timestamp)&0x0000001F (i.e. offset is less than least significant 5 bits of previous
timestamp):

Timestamp = (Previous timestamp)&0xFFFFFFEO + Time Offset + 0x20
The addition of 0x20 accounts for the rollover event

Refer to Figure 4-2 for an example of using compressed timestamp headers. In this example, local message type 0 is used
to define a message containing a both a timestamp field and multiple data fields (Record 1). Local message type 1 defines a
message containing only data fields (Record 2).

Record 3 is a data message which includes a timestamp value of OXXXXXXX3B. For the purpose of this example, the values
of the upper 3 bytes do not change and are set as 0xXX ‘don’t care’ values.

Record 4 is a data message using a compressed timestamp header. As the Time Offset value is the same as the 5 least
significant bits of the previous timestamp, the calculated timestamp for record 4 is OXXXXXXX3B.

Record 5 is another data message using a compressed timestamp header. The Time Offset value is greater than the 5 least
significant bits of the previous timestamp by 2 seconds, so the calculated timestamp for record 5 becomes OXXXXXXX3D.

Record 6 Time Offset value is 00010, which is smaller than the 5 least significant bits of the previous timestamp (5 Isb of
OXXXXXXX3D is 11101), indicating a rollover event has occurred. Therefore, the timestamp becomes 0xXXXXXX42.

Similarly, record 7 shows an increase in time of 3 seconds and the timestamp becomes 0xXXXXXX45, and record 8 shows a
rollover event resulting in a timestamp of OxXXXXXXX61.

Finally, if a new data message containing a timestamp is recorded (i.e. record 9), then this becomes the new time reference
for any subsequent compressed timestamp data records, such as records 10 and 11.

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4

Record 1:

Record 2:

Record 3:

Record 4:

Record 5:

Record 6:

Record 7:

Record 8:

Record 9:

Record 10:

Record 11:

Normal Header

Definition Message
r Local Message Type

Page 21 of 45

001/000O0O00O0 Timestamp Field 1 Field 2 | Etc...
’0 100000 1| Fied1 Field 2 | Etc...
Normal Header
Data Message
r r Local Message Type
’ 0/0|0 0|0 O0OO0O OOOXXXXX3B Field 1 Field 2 Etc...
Compressed Timestamp Header
Local Message Type
17 L—Time Offset
. . timestamp
1/01/1 101 1| Field1 Field 2 | Etc... OXXXXXXX3B
) - Resultant timestamp
1101 11101| Fied1 Field 2 | Etc... 03000XXXX3D
) - Resultant timestamp
101 00010| Fied1 Field 2 | Etc... 0XXXXXXX42
]) Resultant timestamp
1/0 1/0 01 0 1| Field1 Field 2 | Etc... 03000KXXXA5
.) Resultant timestamp
’1 01/0000O0 1] Field1 Field 2 | Etc... OXXXXXXX61
Normal Header
Data Message
r r Local Message Type
’0‘0‘0 0[0 0 0 0| oxxxxxxx63 | Field1 | Field2 | Etc..
Compressed Timestamp Header
Local Message Type
17 L—Time Offset
) - Resultant timestamp
1/01/1 00 1 0| Field1 Field 2 | Etc... OXXXXXXX72
. . Resultant timestamp
1/0 1/0 00 0 1| Field1 Field 2 Etc... 03XXXXXX81
. N
" T~
Record Header Record Content
(1 byte) (varying size)

Figure 4-2. Compressed Timestamp Header Example

SBANT

thisisant.com

Page 22 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

4.2 Record Content
The record content contains one of two messages:

o Definition Message: describes the architecture, format, and fields of upcoming data messages
e Data Message: contains data that is formatted according to a preceding definition message

Definition and data messages are associated through the local message type. A data message must always be specified by a
definition message before it can be used in a FIT file. If a data message is sent without first being defined, it will cause a
decode error and the data will not be interpreted. Definition messages are used by the conversion tools to interpret
subsequent data messages contained in a FIT file. For more details see best practices in section 4.8.

4.2.1 Definition Message

The definition message is used to create an association between the local message type contained in the record header,
and a Global Message Number (mesg_num) that relates to the global FIT message.

Record Content
Record Reserved |Architecture | Global Message Number | # of Fields FIELD DEFINITIONS
Header (1 byte) (1 byte) (2 bytes) (1 byte) (3 bytes/field)

Variable Content ———»

\
A

A

Fixed Content: 5 Bytes

Figure 4-3. Definition Message Structure

Definition messages are extended to include additional Developer Field Definitions if the Developer Data flag is set in the
record header.

Record Content

o~

iy # of Devel
Record Reserved Architecture Global Message Number # of Felds Field Definitions @ Fieel\:j:oper Developer Field Definitions
Header (1 byte) (1 byte) (2 bytes) (1 byte) (3 bytes/field) (1 byte) (3 bytes/field)
+———————————— Fixed Content: SBytes Warizble Content

Figure 4-4. Definition Message with Developer Data Structure

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 23 of 45

The record contents of a definition message are outlined in Table 4-3 below.

Table 4-3. Definition Message Contents

Byte Description Length Value
0 Reserved 1 Byte 0
1 Architecture 1 Byte Architecture Type

0: Definition and Data Messages are Little Endian
1: Definition and Data Message are Big Endian

2-3 Global 2 Bytes 0:65535 — Unique to each message
Message *Endianness of this 2 Byte value is defined in the Architecture byte
Number
4 Fields 1 Byte Number of fields in the Data Message
5- Field 3 Bytes See Field Definition Contents (Table 4-4)
4 + Fields * 3 Definition (per Field)
5 + Fields * 3 # Developer 1 Byte Number of Self Descriptive fields in the Data Message
Fields (Only if Developer Data Flag is set)
6 + Fields * 3 - Developer 3 bytes See Developer Data Field Definition Contents (Table 4-7)
END Field (per Field)
Definition

4.2,1.1 Architecture Type

The Architecture Type describes whether the system architecture is big or little endian. All data in the related definition and
upcoming data message will follow this format.

4.2,.1.2 Global Message Number

The Global Message Number relates to the Global FIT Message. For example, the Global FIT Message ‘Record’ has the
global message number *20". All Global Message Numbers are found in the mesg_num base type defined in the SDK.

4.2.1.3 Fields

Fields defines the number of FIT fields that will be included in the data message. For example, if a given FIT message had
10 defined FIT fields, the application may only choose to send 4 of those FIT fields in the data message. In this case, the
Fields byte would be set to ‘4. All FIT messages and their respective fields are listed in the global FIT profile.

4.2.1.4 Field Definition

The Field Definition bytes are used to specify which FIT fields of the global FIT message are to be included in the upcoming
data message in this instance. Any subsequent data messages of a particular local message type are considered to be
using the format described by the definition message of matching local message type. All FIT messages and their respective
FIT fields are listed in the global FIT profile. Each Field Definition consists of 3 bytes as detailed in Table 4-4. Refer to
Figure 4-6 for an example definition message.

Table 4-4. Field Definition Contents

Byte Name Description
0 Field Definition Number Defined in the Global FIT profile for the specified FIT message
Size Size (in bytes) of the specified FIT message’s field
2 Base Type Base type of the specified FIT message’s field
y4

SBANT

thisisant.com

Page 24 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

4.2.1.4.1 Field Definition Number

The Field Definition Number uniquely identifies a specific FIT field of the given FIT message. The field definition numbers
for each global FIT message are provided in the SDK. 255 represents an invalid field number.

4.2.14.2 Size

The Size indicates the size of the defined field in bytes. The size may be a multiple of the underlying FIT Base Type size
indicating the field contains multiple elements represented as an array.

4.2.1.4.3 Base Type

Base Type describes the FIT field as a specific type of FIT variable (unsigned char, signed short, etc). This allows the FIT
decoder to appropriately handle invalid or unknown data of this type. The format of the base type bit field is shown below
in Table 4-5. All available Base Types are fully defined in the fit.h file included in the SDK and as listed in Error! Reference
source not found..

Table 4-5. Base Type Bit Field

Bit Name Description
7 Endian Ability 0 - for single byte data
1 - if base type has endianness (i.e. base type is 2 or more bytes)
5-6 Reserved Reserved
0-4 Base Type Number Number assigned to Base Type (provided in SDK)

When the decoder encounters unknown or invalid data, it will assign an invalid value according to the designated base type.
Base type numbers (bits 0:4) and their invalid values can also be found in the fit.h file provided in the SDK and as listed in
Error! Reference source not found. below.

Table 4-6. FIT Base Types and Invalid Values

Base Endian Base Type Invalid Value Size Comment
Type Ability Type Name (Bytes)
Field
0 0 0x00 enum OxFF 1
1 0 0x01 sint8 0x7F 1 2's complement format
2 0 0x02 uint8 OxFF 1
3 1 0x83 sintl6 0x7FFF 2 2's complement format
4 1 0x84 uint16 OxFFFF 2
5 1 0x85 sint32 0x7FFFFFFF 4 2's complement format
6 1 0x86 uint32 OxFFFFFFFF 4
7 0 0x07 string 0x00 1 Null terminated string encoded in

UTF-8 format

1 0x88 float32 OxFFFFFFFF 4
1 0x89 floaté4 OxFFFFFFFFFFFFFFFF 8
10 0 0x0A uint8z 0x00 1
11 1 0x8B uint16z 0x0000 2
12 1 0x8C uint32z 0x00000000 4
13 0 0x0D byte OxFF 1 Array of bytes. Field is invalid if all

bytes are invalid.

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 25 of 45

14 1 Ox8E sint64 0x7FFFFFFFFFFFFFFF 8 2's complement format
15 1 0x8F uint64 OxFFFFFFFFFFFFFFFF 8
16 1 0x90 uint64z 0x0000000000000000 8

4.2,1.5 Developer Data Field Description

Developer data fields allow for files to define the meaning of data without requiring changes to the FIT profile being used.
Rather than having information like Field Name, Units, and Base Type encoded into the profile this information is included in
2 special global messages that act as meta-data for the decode process. The developer data field description is used to map
data within a data message to the appropriate meta-data.

Table 4-7 — Developer Field Description

Byte Name Description
0 Field Number Maps to the field_definition_number of a field_description Message
Size Size (in bytes) of the specified FIT message’s field
2 Developer Data Index Maps to the developer_data_index of a developer_data_id Message

4.2.1.5.1 Developer Data ID Messages

Developer data ID messages are used to uniquely identify developer data field sources, a FIT file can contain data for up to
255 unique developers. These messages must occur before any related field description messages.

Table 4-8 - Developer Data ID Message

Name Type Size Description
application_id uint8 16 16-byte identifier for the developer
developer_data_index uint8 1 Developer Data Index that maps to this Message.

4.2.1.5.2 Field Description Messages

Field description messages define the meaning of data within a dev field, a FIT file can contain up to 255 unique fields per
developer. These messages must occur in the file before any related data is added.

Table 4-9 - Field Description Messages

Name Type Size Description
developer_data_index uint8 1 Index of the developer that this message maps to
field_definition_number uint8 1 Field Number that maps to this message
fit_base_type_id uint8 1 Base type of the field
field_name string 64 Name of the field
units string 16 Units associated with the field
native_field_num uint8 1 Equivalent native field number
y4

SBANT

thisisant.com

Page 26 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

4.2.1.5.2.1 Native Field Num Details

The native_field_num field is used to indicate that a field can be considered equivalent to the corresponding field_number in
the message that the developer data is included in. This field can be used to indicate to data consumers that the developer
considers its data to be the same as native data.

Developer Fields that override native FIT fields shall preserve the units defined for that field in the Profile.xlsx document.
Scaling and offset defined in Profile.xIsx for the native data fields shall not be applied to the developer data field. Instead,
the developer data field shall be logged with full precision and resolution using the appropriate base data type.

For example, if overriding total_hemoglobin_conc in the record message, which has a scaling of 100, the developer data
field should be logged as a float (to keep two decimal places of precision).

Developer fields will be written to the FIT file in such a way that decoders do not need to manipulate them in any way.
Decoders that are consuming developer data should not trust that developer data is logged correctly. It is still strongly
recommended to do some basic data verification before attempting to display it.

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 27 of 45

SS

4.2.2 Data Message

Once a global FIT message has been associated to a local message type, and the format of the FIT fields defined, data
messages may be written to the FIT file. Definition messages have a minimum length of 8 bytes, excluding the record
header; however, data messages can be very compact.

Record Content
Record Data Fields
Header (Number and Format specified in the Definition Message)

A

Variable Content

\

Figure 4-5. Data Message Structure

A data message must start with a normal or compressed timestamp header indicating its local message type, and the record
content must be formatted according to the definition message of matching local message type.

SBANT

thisisant.com

Page 28 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

4.3 FIT File Example

The example in Figure 4-6 shows a simple FIT activity file containing the 14-byte file header, data records, custom
developer data and 2 byte CRC.

14 Byte Header

File Header: l

" N .
Record Header Record Content
—_——— — T —

Record 1: |01P00000‘|0|0‘ 0 |5‘0‘1|0|1‘2‘132|2‘2‘132|3|4’140‘4|4‘134
.) T iw .)

Field Def (type) Field Def {mfg) Field Def {(prod) Field Def (SM) Field Def (time)

Definition Message Reserved | Global Mag Mo,
Local Mag Type O Arrhitertire Ma. of Fields
Record 2: lOOkOOOOO‘ | 4 l 15 l 22 1234 ‘ 621463080 ‘
Data Message j fype T product T time_created
Local Msg Type 0 manufacturer serial_number

Record 3: ‘0‘100‘0000‘ ‘ 0 ‘ 0 207 ‘ 2|11 |16|13| 3 ‘ 1 ‘ 2 |

< i
v h
Definition Message j Resetved T Global I’ISQ Mo. T Field Def Field Daf

(app_id) (dev_data_idx)

Local Msg Typed Architecture Mo, of Fields

Record 4: ‘OOPOOOOO‘ 441 | 2 | 2 ‘ 3|1)15(1 |2 1231 (41|12 |1 |&8 0|

Data Message —T app_id cev_data_idx
Local Msg Type 0

Record 5: ‘0‘100‘0000‘ ‘ 0 ‘ 0‘ 206 ‘ 510 1| 2 1‘ 1 ‘ 2211|2313 ‘64‘ 718 |16 7

j * * - v " ~ - g ~ ~ v
Definition Message Reserved | Global Msg Mo, Field Def Figld Def Field Def Field Def Field Def
architecture (dev_data_idsy (field_def_numy (base_type_id) (field_narme) {units)

Local Msg Type O

“doughnuts earned”

Record 6: ‘00)000000‘ | 0 ‘ 0 ‘ 1 “doughnut s” ‘

Data Message J dev_data_idx Tbase_type_id T units

Local Msg Type 0 field_def_num field_narme

Record 7: ‘01‘100000‘|0‘0‘20‘4‘3‘1|2|4‘1‘2|5‘4‘134|6‘2‘132‘1|0‘1‘0‘
J iu O = -

" v v) -
Field Def (HR) Field Def (cad) Field Def (dist) Field Def {spd) Dev Field Def

Definition M
efinition Message (doughnuts_earned)

Dev Data Fl
ev Da 20 rurn_dev_fields

Local Msg Type O

Record 8: [00})00000‘ |l40[83‘ 510 ‘ 2800 | 1 ‘
hir ? dist T doughnuts_earned
cadence spd
Record 9: ‘00%)00000‘ |143 20 2080 ‘ 2920 1 ‘
Record 10: ‘OOPOOOOO‘ |144‘ 92‘ 3710 ‘ 3050 1 ‘

CRC: 2 Byte CRC

Figure 4-6. Definition and data message example

L

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 29 of 45

4.3.1 Record 1 (definition message: ‘file_id’ (mesg _num = 0x00))

Indicates the record is a definition message specifying the upcoming data messages (of local message type 0) are:
e Little Endian
e Global Message Number 0 identifies FIT ‘file_id" message
e The FIT file_id fields that will be included in the associated data message are:
o Field Definition Number: 0 (type); Size: 1 byte; Base Type: 0 (enum)
o Field Definition Number: 1 (manufacturer); Size: 2 bytes; Base Type: 132 (uint16)
o Field Definition Number: 2 (product); Size: 2 bytes; Base Type: 132 (uint16)
o Field Definition Number: 3 (serial number); Size: 4 bytes; Base Type: 140 (uint32z)

o Field Definition Number: 4 (time_created); Size: 4 bytes; Base Type: 134 (uint32)

Global Message Number is found in the mesg_num type of the FIT protocol

Field Definition Numbers for each FIT message are found in the FIT profile provided in the SDK. Size and Base Type
definitions are located in the fit.h file in the SDK, or as listed in Error! Reference source not found..

4.3.2 Record 2 (data message: 'file_id’ (local msg type = 0))

Indicates the record is a data message of local message type 0. Data is formatted according to the definition message of
local message type 0:

e Little Endian, FIT *file_id" message

¢ Included Fields and Data:

o type: 4* (activity file)
o manufacturer: 15* (Dynastream)
o product: 22

o serial number: 1234

o time_created: 621463080 (~14 Aug 2009)
* These values are defined in the FIT protocol

4.3.3 Record 3 (definition message: 'dev_data_id’ (mesg_num = OxCF))

Indicates the record is a definition message specifying the upcoming data messages (of local message type 0) are:
e Little Endian
e Global Message Number 207 identifies FIT ‘dev_data_id’ message
e The FIT file_id fields that will be included in the associated data message are:
o Field Definition Number: 1 (app_id); Size: 16 bytes; Base Type: 13 (byte)

o Field Definition Number: 3 (dev_data_index); Size: 1 byte; Base Type: 2 (uint8)

SBANT

thisisant.com

Page 30 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

4.3.4 Record 4 (data message: 'dev_data_id’ (local msg type = 0))

Indicates the record is a data message of local message type 0. Data is formatted according to the definition message of
local message type 0:

e Little Endian, FIT ‘dev_data_id" message

¢ Included Fields and Data:
o app_id: [44,1,22,2,3,1,15,1,2,12,31,41,1, 2,1, 88, 12, 13, 12, 22]
o dev_data_idx: 0

4.3.5 Record 5 (definition message: 'field_description’ (mesg_num = 0xCE))

Indicates the record is a definition message specifying the upcoming data messages (of local message type 0) are:
e Little Endian
e Global Message Number 206 identifies FIT ‘field_description” message

e The FIT file_id fields that will be included in the associated data message are:

o Field Definition Number: 0 (dev_data_idx); Size: 1 byte; Base Type: 2 (uint8)
o Field Definition Number: 1 (field_def_num); Size: 1 byte; Base Type: 2 (uint8)
o Field Definition Number: 2 (base_type_id); Size: 1 byte; Base Type: 2 (uint8)
o Field Definition Number: 3 (field_name); Size: 64 byte; Base Type: 7 (string)
o Field Definition Number: 8 (units); Size: 16 byte; Base Type: 7 (string)

4.3.6 Record 6 (data message: 'field_description’ (local msg type = 0))

Indicates the record is a data message of local message type 0. Data is formatted according to the definition message of
local message type 0:

e Little Endian, FIT *field_description” message
e Included Fields and Data:
o dev_data_idx: 0
o field_def_num: 0
o base_type_id: 1 (sint8)
o field_name: “doughnuts_earned”

o units: “doughnuts”

4.3.7 Record 7 (definition message: 'record’ (mesg_num = 0x14))

Indicates the record is a definition message specifying the upcoming data messages (of local message type 0) are:
e Little Endian
e Includes Custom Developer Data
e Global Message Number 20 identifies FIT ‘record’” message
e The FIT record fields that will be included in the associated data message are:

o Field Definition Number: 3 (heart_rate); Size: 1 byte; Base Type: 2 (uint8)

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4

(¢]

o

o

Field Definition Number: 4 (cadence);
Field Definition Number: 5 (distance);

Field Definition Number: 6 (speed);

Size: 1 bytes; Base Type: 2 (uint8)

Size: 4 bytes; Base Type: 134 (uint32)

Size: 2 bytes; Base Type: 132 (uint16)

e The Developer data that will be included in the associated messages are:

o

Field Number: 0;

Size: 1 bytes; Developer Data Index: 0

= Mapping the Dev Data Index and Field Number to previous dev_data_id and field_description
messages, indicates that this field is doughnuts_earned

Global Message Number is found in the mesg_num type of the FIT protocol

Field Definition Numbers for each FIT message are found in the FIT profile provided in the SDK. Size and Base Type
definitions are located in the fit.h file in the SDK, or as listed in or as listed in Error! Reference source not found..

4.3.8 Record 8 (data message: 'record’ (local msg type = 0))

Indicates the record is a data message of local message type 0. Data is formatted according to the definition message of

Page 31 of 45

local message type 0:
e Little Endian, FIT ‘record” message

e Included Fields and Data:

o

heart_rate
cadence:
distance:
speed:

doughnuts_earned:

140 (bpm)
88 (rpm)
510 (cm)

2800 (mmy/s)

1 (doughnut)

4.3.9 Record 9 (data message: 'record’ (local msg type = 0))

Indicates the record is a data message of local message type 0. Data is formatted according to the definition message of

local message type 0:
e Little Endian, FIT ‘record” message

e Included Fields and Data:

o

heart_rate
cadence:
distance:
speed:

doughnuts_earned:

143 (bpm)
90 (rpm)
2080 (cm)
2920 (mmy/s)

1 (doughnut)

4.3.10 Record 10 (data message: 'record’ (local msg type = 0))

Indicates the record is a data message of local message type 0. Data is formatted according to the definition message of

local message type 0:

e Little Endian, FIT ‘record” message

SBANT

thisisant.com

Page 32 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

e Included Fields and Data:

o heart_rate : 144 (bpm)
o cadence: 92 (rpm)
o distance: 3710 (cm)
o speed: 3050 (mm/s)
o doughnuts_earned: 1 (doughnut)

Note that in this example, the fields are defined in the order of increasing field number. This does not have to be the case.
Field definitions do not need to be in the order of increasing field number, however, the order the fields are recorded in
data message MUST follow the order they are defined in the definition message.

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 33 of 45

4.4 Scale/Offset

The FIT SDK supports applying a scale or offset to binary fields. This allows efficient representation of values within a
particular range and provides a convenient method for representing floating point values in integer systems. A scale or
offset may be specified in the FIT profile for binary fields (sint/uint etc.) only. When specified, the binary quantity is
divided by the scale factor and then the offset is subtracted, yielding a floating point quantity. The field access
functions within the SDK automatically handle this conversion. If no scale and offset are specified, the field is interpreted as
the underlying type and no extra conversion is necessary.

Table 4-10. Example Field Featuring Both Scale and Offset

Field Type Scale Offset Units

altitude uint16 5 500 m

Table 4-11. Altitude Field Value Encoding

Quantity Value Field Field
Value Value
(Decimal) (Hex)

Height of 6960.8m 37304 0x91B8
Aconcagua
Minimum Value -500.0m 0 0x0000

Maximum Value 12606.8m 65534 OxFFFE

SBANT

thisisant.com

Page 34 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

4.5 Dynamic Fields

The interpretation of some message fields depends on the value of another previously defined field. This is called a Dynamic
Field. For example, field #3 of the 'event' message is 'data’ and is a dynamic field. If the 'event' field is equal to 'battery’
then 'data’ is interpreted as 'battery level'. Similarly, if 'event’ is 'fitness_equipment' then 'data’ is interpreted as
'fitness_equipment_state'.

Figure 4-7. Sample Dynamic Fields in the 'Event' Message

2= &
5 E
=] Comp ® » £
Message 3 onent g @ E P § Ref Field Ref Field
1 |Name i Field Name Field Type Array s wn =] & < Name Value Comme
60| event
61 253 timestam date_time 5
62 Ceentwed
63 1 event_type event_type
64 2 datal6 uint16 data 1 16
65 3 data uint32 1
66 timer_trigger timer_trigger 1 event timer
67 course_point_index message_index 1 event course_paoint
81 _state 1
82 set_mation_type uint32 mation 1,1 s, 16,16 event mation_type_set
83 detected_motion_type motion_type event motion_type detected
84 sport_point uint32 score,i 1,1 16,16 event sport_point
AR Alavant Arann nintf

These alternate field interpretations (e.g. ‘battery_level’ and ‘fitness_equipment_state’) are known as subfields and differ
somewhat from regular fields. They have no field number (‘Field Def #’ as shown in the figure above); instead, the field
number of the main field (e.g. ‘data’) always applies. Subfields must have one or more reference field and reference value
combinations. When the reference field contains the reference value, the field shall be interpreted using the properties
(name, scale, type etc.) of the subfield rather than the main field. Reference fields must be of integer type, floating point
reference values are not supported. If none of the reference field/ value combinations are true then the field is interpreted
as usual (as ‘data’ in this example). Subfields may be of different type or size so long as each subfield is not larger than the
main field. Care must be taken to define reference field/value combinations that are unambiguous for each desired
subfield.

Subfields may contain components. The FIT protocol supports nested components meaning subfields may contain
components that are also subfields.

The advantage of dynamic fields is that their use allows the interpretation of a field to change, without the usual
prerequisite to write a new message definition. This optimizes the size of a file.

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 35 of 45

4.6 Components

Components are a way of compressing one or more fields into a bit field expressed in a single containing field. This can
allow some space saving/compression. On decode the SDK will automatically create new field objects and extract the data
from the containing field. A destination field of the same name must be defined for every component in the containing field
but is not included in the message, it will be automatically generated by the decoder. The destination field can itself contain
components requiring expansion.

o g
Message E Arr 2 LI g 7 RefField
Field Hame Field Type Components =z = E Ref Field Value
Name % ay & =] @ 5 Hame
i g
| |- - | [- - - | [*]| |+ -
i event
i 253 timestamp date_time 5
} 0 ot
} 1 event_tvpe event_type
I 2 data1g uint16 data 1 16
! 3 data uint32 1
¢ timer_trigger timer_trigger 1 event timer
} course_point_index message_index 1 event course_peint
] sport_point uint32 SCOre, opponent_score 1,1 16,16 event sport_point
- 8
Containing s :
Field rear_gear, 10,1,1 8,
1= front_gear_num, g,
b front_gear 2
P 4 event_group Components
| 7 sCore uint1g
}
) 2 opponent_score uint1g
9 front_gear_num uint@z
I
_ - 10 front_gear uintdz
| Destination
Field _
11 rear_gear_num uintdz
|
12 rear_gear uintdz

Figure 4-8. Example Components in the 'Event’' Message

As shown in Figure 4-8, the subfield ‘gear_change_data’ contains four components (‘rear_gear_num’, ‘rear_gear’,
‘front_gear_num’ and ‘front_gear’). This means when the subfield is encountered in an event message (i.e. if ‘event’ is
‘front_gear_change’ or ‘rear_gear_change’, see Section 4.4 for discussion of Subfields) the data is expanded into the four
destination fields of the same name.

The 'bits’ property is used to specify the format of the data in the containing field; N bits of data are right shifted from the
containing field to generate the data for the destination field. Therefore all low order bits of the containing field must be
contiguous component data. Extra undefined high order bits will be ignored by the decoder. The decoder will continue
gracefully if the containing field is smaller than expected (i.e. it runs out of bits). The maximum value for ‘bits’ is 32. Even
though containing fields are often a byte array, ‘bits’ need not be a multiple of 8. The decoder will correctly access
successive array elements in the containing field in order to retrieve sufficient bits (for example to extract 16 bits from a
containing field of basetype byte[]).

SBANT

thisisant.com

Page 36 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4
Scale and offset must be specified for all components even if these are 1 and 0. However, scale and offset will not be
applied to destination fields with types of string or enum.

8bits—
8bits

,?I

Event Mesg| 0x29BB0940 |42| 0x27010E08 ot

* * * 8bits

timestamp event data
(gear_change_data)

Event Mesg Yy Y Y Y
After
Component| 0X29BB0940 | 42| 0x27010E08 |0x08|0x0E|0x01/0x27
Expansion * * * * *
timestamp event data rear_gear_num T
(gear_change_data) rear_gear | front_gear

front_gear_num

Figure 4-9. Example Component Expansion

Figure 4-9 further demonstrates component expansion. During decode the decoder encounters an event message with 3
fields in the FIT source. Since there are 4 components defined for the active subfield (gear_change_data) these fields are
generated and populated with data from the containing field in accordance with the 'bits' property. The message object
sent to the OnMesg handler will contain 7 fields.

4.7 Common Fields (Field#, Field Name, Field Type)

Certain fields are common across all FIT messages. These fields have a reserved field number that is also common across
all FIT messages (including in the manufacturer specific space).

4.7.1 Message Index (Field # = 254, message_index, message_index)

This field allows messages to be indexed with a common method.

The SDK C code provides a FIT_LookupMessage function that returns the location of a message in a file by specifying the
global message number and message index. The message index field also contains a bit to indicate a selected message.
For example, the active user profile could be selected by setting the selected bit in the message index. Note,
message_index fields must be recorded sequentially (i.e. numbered starting from 0 and incremented in steps of 1).

Message index can be used to refer to a previously defined record. For example, the user_profile message has a
message_index field. Multiple user_profile messages may be recorded using the message_index field. The blood_pressure
message has a user_profile_index field that relates back to the user_profile_message. For example, if the blood_pressure
message has a user_profile_index =1, this will correspond to the user_profile message that has message_index=1.

4.7.2 Timestamp (Field # = 253, timestamp, date_time)

Timestamp is a common UTC timestamp field for all FIT messages. This field may be used in combination with the
compressed timestamp header.

4.7.3 Part Index (Field # = 250, part_index, uint32)

Part index acts as a sequence number and is used to order multi-part data. Each group of multi-part data must start with
part_index 0 and each message increments by one. When part_index 0 is encountered again it indicates the start of a new
multi-part block.

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 37 of 45

4.8 Best Practices
To properly encode/decode FIT files, the following MUST be included:

e FIT File header
e Data Record 1: file_id Definition Message
e Data Record 2: file_id Data Message

e Data Records: Ensure appropriate definition messages are included in the FIT file prior to recording any associated
data messages. Note field definitions do not need to be in the order of increasing field number, however, the
order the fields are recorded in a data message MUST follow the order they are defined in the definition message

e 2 ByteCRC

4.8.1 File ID Messages

The purpose of the ‘file_id" message is to uniquely identify the file in a global system. The fields in the data message may
include file type, manufacturer, product, serial number, time created and file number depending on the FIT file type.

4.8.2 Defining Data Messages

A data message must always be specified by a definition message prior to recording any data. Once a data message has
been properly defined, the FIT file can be properly decoded. Even if a device’s implemented profile does not include all of
the FIT messages or fields contained in the FIT file, it will be decoded without error: unrecognized data will be ignored, and
any expected values not included will be assigned invalid values. If a data message is recorded without an appropriate
definition message, an error will occur.

Often, multiple data messages of the exact same format are recorded. In this case, it is best practice to use a single
definition message for all data messages; rather than recording a definition message for each data message. For example,
in Figure 4-10, two types of data messages are being recorded: lap and record messages. The FIT file on the left contains a
definition message for each data message. Although technically correct, this method of recording data is sub optimal;
instead, define the lap and record messages once at the beginning of the file, followed by all lap and record messages as
shown in the FIT file on the right.

FIT File FIT File
Definition_Message_1 (Lap) Definition_Message_1 (Lap)
Data_Message_1 (Lap) Definition_Message_2 (Record)
Definition_Message_2 (Record) Data_Message_1 (Lap)
Data_Message_2 (Record) Data_Message_2 (Record)
Definition_Message_1 (Lap) Data_Message_1 (Lap)
Data_Message_1 (Lap) Data_Message_2 (Record)
Definition_Message_2 (Record)

Data_Message_2 (Record)

Correct (not optimal) Best Practice

Figure 4-10. Best Practice for Defining Data Messages.

SBANT

thisisant.com

Page 38 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

4.8.3 Re-defining Local Message Types

Local message types can be redefined within a single FIT file. Figure 4-6, for example, shows a FIT file using a single local
message type (i.e. 0) to record both the *file_id’ and ‘record’ data. Note that this FIT file contains the same data that was
recorded in section 4.3. The number of local message types used in a file should be minimized in order to minimize the RAM
required to decode the file. For example, embedded devices may only support decoding data from local message type 0.
The advantage of using multiple local message types is the file size is optimized because new definition messages are not
required to interleave different message types. Multiple local message types should be avoided in file types such as settings
where messages of the same type can be grouped together.

Care must be taken when redefining local message types. If data message formats are recorded without the
new definition message, unpredictable results will occur and may cause the decoder to fail.

File Header: 14 Byte Header

Record Header Record Content

e ——
N — —

Record 1: 01000000 0| 0 0 5(/]0| 1|0 12132/ 2|2 |132(3 | 4 |140| 4 | 4 |134

Record 2: 00000000 4 15 22 1234 621463080

Record 3: 01000000 0|0 20 4 (3| 1|2(4|1|2| 5|4 |134 6| 2 132

Definition Message j
Local Msg Type

Record 4: 00000000| [140| 88 510 2800
Record 5: 0000/0000| [143| 90 2080 2920
Record 6: 00000000| [144| 92 3710 3050
CRC: ZBytejCRC

Figure 4-11. Redefining local message type within a single FIT file

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 39 of 45

5 FIT Message Conversion

Reference C, C++ and Java code for both embedded and PC conversions of FIT files are available in the provided SDK. The
FIT protocol is fully backwards compatible, ensuring that devices with different versions of the FIT protocol can share files.
The conversion tool handles all conversion-related issues such as differences in device architecture (big endian vs. little
endian), and differences in messages between devices which have different versions of the FIT protocol.

Figure 5-1 takes the example given in section 4.3 and shows how an incoming message is encoded according to the
device’s implemented Product Profile and added to the FIT file. In this case, the data corresponding to Record 5 of the
previous example is used.

DEVICE_A DEVICE_B
Incoming Measured
Data: r————- +| FIT File
|
heart_rate: 140 bpm |
cadence: 88 rpm |
distance: 510 cm |
speed: 280 m/s | Received Encoded
| Record 5:
Implemented ¢ .
Product Profile File heart_rate: 140
FIT message: record . Transfer cadence: 88
9 Encoded Record 5: | distance: 510
FIT Fields: heart rat 140 I speed: 2800
. ; eart_rate:
heart_rate: u!nt8 —» cadence: 88 | Implemented
cadence: uint8 dist . 510 | Product Profile
distance: uint32 Istance: |
speed: uint16 speed: 2800 | Decoded Record 5: FIT message: record
| .
| heart_rate: 140 FIT Fields:
FIT Fil I cadence: 88 | heart_rate: uint8
fle I distance: 510 cadence: uint8
I grade: OXFFFF distance: uint32
| power Ox7FFF grade: uint16
¢ power sint16

{ Application)

Figure 5-1. Conversion of a FIT message

In this simplified example, Device_A's implemented product profile includes the FIT ‘record’ message and its heart_rate,
cadence, distance and speed FIT fields. The incoming data is formatted and encoded according to the product profile and
added to the FIT file. When all records have been added and the FIT file is complete, it is ready for transfer.

Device_B, on the other hand, has a slightly different implemented product profile that still includes the FIT ‘record’
message; however, this profile has a different set of FIT fields defined. Device_A and Device_B both have the heart_rate,
cadence and distance FIT fields, but Device_A includes speed, whereas Device_B includes grade and power data. As FIT is
fully compatible across different versions of global and product FIT profiles, the protocol will automatically account for these
differences.

As illustrated in Figure 5-1, Device_B receives the FIT file, and the decoder will interpret and decode the information it
recognizes (i.e. heart_rate, cadence, distance), ignore data it does not recognize (i.e. speed), and populate the remaining
FIT fields with invalid values according to its base type (i.e. grade and power). In this way, the FIT file is maintained and
can be transferred again in its original form, unrecognized or missing data is processed by Device_B without causing errors,
and the resultant information is passed in the form of a C structure or object to Device_B's application for further use.

SBANT

thisisant.com

Page 40 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

5.1 Compatibility

The FIT protocol is designed for extensibility. The software development code provided is designed to maintain
compatibility as FIT files are transferred between systems. For compatibility between systems to be maintained, the FIT
profile must be strictly adhered to. There is built in flexibility for system architectures. Endian architecture is described in
each message definition and automatically handled within the FIT SDK.

5.2 Common FIT File Applications

Certain applications of FIT files lead to a natural grouping of messages based on purpose. Refer to the FIT File Types
Description document for more details on the common message groupings and methods for best practice of the following

file types:
Table 5-1. Common FIT File Types

FIT File Type Purpose
Settings Describes a user’s parameters such as Age, Weight, and Height
Activity Records data and events from an active session
Workout Records data describing a workout’s parameters such as target rates and durations
Blood Pressure Provides summary data from a blood pressure device
Weight Provides summary data from a weight scale device

6 Plugin Framework

As of version 16.30 the FIT SDK now supports manipulating FIT files before the output is pushed to the end-application.
This allows the developer to add a layer of pre-processing before the consumer of the data gets messages and definitions in
its listener call-backs.

6.1 Plugin Architecture

The new plugin architecture allows for developers to perform pre-processing on FIT data before the final output is returned
to the application’s subscribed listeners. A new MesgBroadcaster was created called the BufferedMesgBroadcaster which
receives the messages from the decoder as they are processed by invoking the Run() method. Multiple plugins can be
registered to a BufferedMesgBroadcaster and when messages come in they are dispatched to the OnIncomingMesg()
handler in the plugin. Once the decoder finishes the Run() function completes. The consumer application will then call the
Broadcast() method on the BufferedMesgBroadcaster. The broadcast method causes the plugins to process each individual
message and once processed they are sent to the application’s registered listeners.

The new plugin framework is implemented in C++, C#, and Java with very similar Application Programming Interfaces. The
SDK includes the “Heart Rate to Record” Plugin which allows applications to process Garmin’s HRM-Tri “hr” messages and
appends the heart rate values into the appropriate record message.

There is a block diagram below showing the new pieces introduced in this SDK to support plugins and shows the differences
needed in the application code to get started using plugins. The example is based on the C++ implementation.

SANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4

Class listener :
fit::DevicelnfoMesgListener{

OnMesg(fit::DevicelnfoMesg
mesg){
//Handle message

}

} //class listener

static void Main()
{
MesgBroadcaster
broadcaster;
Listener listener;
File file;

//Add Listeners
broadcaster.AddListener((fit::
DevicelnfoMesgListener)&lIist

ener);

//Process the file (decode)
broadcaster.Run(file);

}//Main

Existing
Functionality

Page 41 of 45

Application/Mesg
Listeners

Plugin(s)
//Handle Messages

OnlncomingMesg();
//Handle Broadcast event
OnBroadcast();

MesgBroadcaster

//Adds Mesg-specific listener
AddListener();

//Removes Mesg-specific listener
Removelistener();

//Handles incoming Mesgs, sends
to respective listeners
OnMesg();

//Handles incoming Mesg
Definitions, sends to respective
listeners
OnMesgDefinition();

New Functionality

BufferedMesgBroadcaster
(extends MesgBroadcaster)

//Register a plugin
RegisterMesgBroadcastPlugin();

//Iterates over stored messages
received in OnMesg() and
Broadcasts them to Application/
MesglListeners
Broadcast();

//Handles messages received
from Decoder (before
Application gets them)

OnMesg();

Decoder

Figure 6-1 Plugin Architecture Block Diagram

SBANT

Class listener :
fit::DevicelnfoMesgListener{

OnMesg(fit::DevicelnfoMesg
mesg){
//Handle message

}

} //class listener

static void Main()

{
BufferedMesgBroadcaster
broadcaster;
Listener listener;
TestPlugin plugin;

File file;

//Register Plugin
Broadcaster.RegisterMesgBro
adcastPlugin(&plugin);
//Add Listeners
broadcaster.AddListener((fit::
DevicelnfoMesgListener)&list
ener);

//Process the file (in decoder)
broadcaster.Run(file);
//Broadcast the messages
broadcaster.Broadcast();

}//Main

thisisant.com

Page 42 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

6.2 Plugin Example (HR)

A good example of a plugin is the one that was created to parse Compressed Heart Rate data into many record messages.
It takes a message like:

Hr Mesg:
o filtered_bpm:72|69|67|67|67|69]70|70 Units: bpm
e event_timestamp_12: 204|3|118]10|91|233|246]129|85]|204|40|197 Units: none
e (Generated through Component Expansion) event_timestamp:
45544.950000|45545.840000|45546.760000|45547.640000|45548.490000|45549.340000|45550.200000|45551.0
80000 Units: seconds

And converts it into multiple record messages shown below:

Record Mesg:
e timestamp: 799247263 Units: seconds
e heart_rate: 67 Units: bpm
Record Mesg:
o timestamp: 799247264 Units: seconds
e heart_rate: 67 Units: bpm
Record Mesg:
e timestamp: 799247266 Units: seconds
e heart_rate: 69 Units: bpm
Record Mesg:
o timestamp: 799247267 Units: seconds
e heart_rate: 70 Units: bpm
Record Mesg:
e timestamp: 799247268 Units: seconds
e heart_rate: 70 Units: bpm

So the plugin pre-processes all of the HR messages in a file, and maps the timestamps back to record messages and adds
the heart rate values to the appropriate record messages.

BANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 43 of 45

6.3 Three D Sensor Adjustment Plugin Explanation and Example

Input:
Calibration message:

e (Calibration Factor: Used to convert the data samples from counts to the desired units (i.e. deg/s, g, G, etc.)

e (Calibration Divisor: The denominator of the calibration factor. Used to convert the data samples from counts to the
desired units (i.e. deg/s, g, G, etc.)

e Level Shift: The applied shift, in counts, that was used to achieve a positive-valued measurement in the ADC
conversion

e Offset Calibration: This is determined in the factory and when combined with a free floating accelerometer or a
non-spinning gyroscope should produce a sample close to zero.

e Orientation Matrix: Can support values from + v/3 and — /3, which allows for mounting sensors at many different
angles and defers adjusting the data until more processing power is available

e Sensor Type: The sensor type is an enum value used to indicate which sensor the calibration message is for.
(Accelerometer = 0, Gyroscope = 1, Magnetometer = 2, Barometer= 3, Invalid =255)

Data message:

e X, Y, and Z are the raw 3-axis sensor measurements. These values are limited to 16-bit accuracy and 30 samples
per message.

Calibration Adjustment:

input X level Shift of fsetCal X
lorientation3z3|* | |inputY | — |levelShift| — |of fsetCalY | | #cal Factor
inputZ level Shift of fsetCalZ

*Note that the orientation matrix is a row major representation of a three by three matrix

Output:

The Three D Sensor Adjustment Plugin does the calibration adjustment and adds the calibrated values to the data message
under the appropriate fields.

SANT

thisisant.com

Page 44 of 45 Flexible and Interoperable Data Transfer Protocol Rev 2.4

Example:

The Three D Sensor Adjustment Plugin was created to adjust the X, Y, and Z data points generated by the sensors
(Accelerometer, Gyroscope, and Magnetometer) and convert them to the desired units. It takes messages that look like:

three_d_sensor_calibration Message:

timestamp: 3 Units: s
calibration_factor: 5 Units: deg/s
calibration_divisor: 82 Units: counts
level_shift: 32768

offset_cal: 22|13|34
orientation_matrix: 0/-1|0|0]0|-1|1|0]0
sensor_type: 1

gyroscope_data Message:

timestamp: 3 Units: s

sample_time_offset: 0/100|/200|300|400|500|600|700 Units: ms

gyro_x: 32592|32242|32411|32646|32724|33000|32536|32950 Units: counts
gyro_y: 32785|32669|33038|32744|32415|32742|32626|32588 Units: counts
gyro_z: 33059|32190|33183|33085|32645|32928|33008|32785 Units: counts
timestamp_ms: 658 Units: ms

And alters the data message to look like:
gyroscope_data Message:

timestamp: 3 Units: s

sample_time_offset: 0/100|/200|300|400|500|600|700 Units: ms

gyro_x: 32592|32242|32411|32646|32724|33000|32536|32950 Units: counts

gyro_y: 32785|32669|33038|32744|32415|32742|32626|32588 Units: counts

gyro_z: 33059|32190|33183]33085|32645|32928|33008]32785 Units: counts

timestamp_ms: 658 Units: ms

calibrated_gyro_x: -0.2439024|6.829268|-15.67073]|2.256098|22.31707|2.378049]9.45122|11.76829 Units: deg/s

e calibrated_gyro_y: -15.67073|37.31707|-23.23171|-17.2561]9.573171|-7.682927|-12.56098|1.036585 Units:
deg/s

e calibrated_gyro_z: -12.07317|-33.41463|-23.10976|-8.780488|-4.02439|12.80488|-15.4878]9.756098 Units:
deg/s

BANT

thisisant.com

Flexible and Interoperable Data Transfer Protocol Rev 2.4 Page 45 of 45

Illustration:
three_d_sensor_calibration
Message:
timestamp: 3 s
calibration_factor: 5 deg/s
calibration_divisor: 82 counts
level_shift: 32768
offset_cal: 22|13|34
orientation_matrix: 0|-1|0/0|0]-1|1|0|0
sensor_type: 1
gyroscope_data Message: v gyroscope_data Message:
timestamp: 3 s timestamp: 3 s

Three D Sensor
Adjustment Plugin

\ 4

sample_time_offset: 0 ms
gyro_x: 32592 counts

sample_time_offset: 0 ms
gyro_x: 32592 counts

gyro_y: 32785 counts gyro_y: 32785 counts

gyro_z: 33059 counts gyro_z: 33059 counts

timestamp_ms: 658 ms timestamp_ms: 658 ms

calibrated_gyro_x: calibrated_gyro_x: -0.2439024 deg/s

calibrated_gyro_y: calibrated_gyro_y: -15.67073 deg/s

calibrated_gyro_z: calibrated gyro z: -12.07317 deg/s
y4

SANT

thisisant.com

	Table of Contents
	Table of Contents
	1 Introduction
	2 Related Documents
	3 Overview of the FIT File Protocol
	3.1 FIT Profiles
	3.1.1 Global Profile
	3.1.2 Product Profile

	3.2 FIT File Protocol
	3.3 FIT File Structure
	3.3.1 File Header
	3.3.2 CRC
	3.3.3 Data Records
	3.3.4 Chained FIT files

	4 Record Format
	4.1 Record Header Byte
	4.1.1 Normal Header
	4.1.1.1 Message Type
	4.1.1.2 Message Type Specific
	4.1.1.2.1 Definition
	4.1.1.2.2 Data

	4.1.1.3 Data Message Header
	4.1.1.4 Local Message Type

	4.1.2 Compressed Timestamp Header
	4.1.2.1 Local Message Type
	4.1.2.2 Time Offset

	4.2 Record Content
	4.2.1 Definition Message
	4.2.1.1 Architecture Type
	4.2.1.2 Global Message Number
	4.2.1.3 Fields
	4.2.1.4 Field Definition
	4.2.1.4.1 Field Definition Number
	4.2.1.4.2 Size
	4.2.1.4.3 Base Type

	4.2.1.5 Developer Data Field Description
	4.2.1.5.1 Developer Data ID Messages
	4.2.1.5.2 Field Description Messages
	4.2.1.5.2.1 Native Field Num Details

	4.2.2 Data Message

	4.3 FIT File Example
	4.3.1 Record 1 (definition message: ‘file_id’ (mesg_num = 0x00))
	4.3.2 Record 2 (data message: ‘file_id’ (local msg type = 0))
	4.3.2 Record 2 (data message: ‘file_id’ (local msg type = 0))
	4.3.3 Record 3 (definition message: ‘dev_data_id’ (mesg_num = 0xCF))
	4.3.4 Record 4 (data message: ‘dev_data_id’ (local msg type = 0))
	4.3.5 Record 5 (definition message: ‘field_description’ (mesg_num = 0xCE))
	4.3.6 Record 6 (data message: ‘field_description’ (local msg type = 0))
	4.3.7 Record 7 (definition message: ‘record’ (mesg_num = 0x14))
	4.3.8 Record 8 (data message: ‘record’ (local msg type = 0))
	4.3.8 Record 8 (data message: ‘record’ (local msg type = 0))
	4.3.9 Record 9 (data message: ‘record’ (local msg type = 0))
	4.3.10 Record 10 (data message: ‘record’ (local msg type = 0))

	4.4 Scale/Offset
	4.5 Dynamic Fields
	4.6 Components
	4.7 Common Fields (Field#, Field Name, Field Type)
	4.7.1 Message Index (Field # = 254, message_index, message_index)
	4.7.2 Timestamp (Field # = 253, timestamp, date_time)
	4.7.3 Part Index (Field # = 250, part_index, uint32)

	4.8 Best Practices
	4.8.1 File ID Messages
	4.8.2 Defining Data Messages
	4.8.3 Re-defining Local Message Types

	5 FIT Message Conversion
	5.1 Compatibility
	5.2 Common FIT File Applications

	6 Plugin Framework
	6.1 Plugin Architecture
	6.2 Plugin Example (HR)
	6.3 Three D Sensor Adjustment Plugin Explanation and Example

