
 P +1 403.932.9292 F +1 403.932.6521

Integrated ANT-FS
Client Interface Control
Document

D00001417 Rev 1.0

2 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Copyright Information and Usage Notice

This information disclosed herein is the exclusive property of Dynastream Innovations Inc. No part of this

publication may be reproduced or transmitted in any form or by any means including electronic storage,

reproduction, execution or transmission without the prior written consent of Dynastream Innovations Inc.

The recipient of this document by its retention and use agrees to respect the copyright of the information

contained herein.

The information contained in this document is subject to change without notice and should not be

construed as a commitment by Dynastream Innovations Inc. unless such commitment is expressly given in

a covering document.

The Dynastream Innovations Inc. ANT Products described by the information in this document are not

designed, intended, or authorized for use as components in systems intended for surgical implant into the

body, or other applications intended to support or sustain life, or for any other application in which the

failure of the Dynastream product could create a situation where personal injury o r death may occur. If

you use the Products for such unintended and unauthorized applications, you do so at your own risk and

you shall indemnify and hold Dynastream and its officers, employees, subsidiaries, affiliates, and

distributors harmless against al l claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended

or unauthorized use, even if such claim alleges that Dynastream was negligent regarding the design or

manufacture of the Product.

©2009, 2010 Dynastream Innovations Inc. All Rights Reserved.

 3 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table of Contents
1 Introduction ... 5
2 Reference Documents ... 6
3 File System ... 6

3.1 Setting Up the File System .. 6
3.2 Crypto Files .. 8
3.3 FIT Files ... 9

4 ANT-FS Client ... 9
4.1 Authentication Methods ... 10
4.2 Command Pipe ... 11

5 Extended Serial Messaging ... 11
5.1 Commands (0xE2) .. 13
5.2 Requests (0xE1) ... 13
5.3 Responses/Events (0xE0) .. 14

6 ANT Message Summary .. 15
6.1 Memory Device Commands ... 20

6.1.1 MESG_MEMDEV_EEPROM_INIT (0xE220) ... 20
6.2 File System Commands ... 21

6.2.1 MESG_FS_INIT_MEMORY (0xE200) .. 21
6.2.2 MESG_FS_FORMAT_MEMORY (0xE201) .. 22
6.2.3 MESG_FS_DIRECTORY_SAVE (0xE207) .. 23
6.2.4 MESG_FS_DIRECTORY_REBUILD (0xE209) ... 24
6.2.5 MESG_FS_FILE_DELETE (0xE20C) .. 25
6.2.6 MESG_FS_FILE_CLOSE (0xE20D) ... 26
6.2.7 MESG_FS_FILE_SET_SPECIFIC_FLAGS (0xE212) .. 28
6.2.8 MESG_FS_DIRECTORY_READ_LOCK (0xE216) .. 29
6.2.9 MESG_FS_SYSTEM_TIME (0xE23D) .. 30

6.3 File System Requests .. 31
6.3.1 MESG_FS_GET_USED_SPACE (0xE202) .. 31
6.3.2 MESG_FS_GET_FREE_SPACE (0xE203) ... 32
6.3.3 MESG_FS_FIND_FILE_INDEX (0xE204) .. 33
6.3.4 MESG_FS_DIRECTORY_READ_ABSOLUTE (0xE205) .. 35
6.3.5 MESG_FS_DIRECTORY_READ_ENTRY (0xE206) .. 36
6.3.6 MESG_FS_DIRECTORY_GET_SIZE (0xE208) ... 37
6.3.7 MESG_FS_FILE_CREATE (0xE20A) ... 38
6.3.8 MESG_FS_FILE_OPEN (0xE20B) ... 40
6.3.9 MESG_FS_FILE_READ_ABSOLUTE (0xE20E) ... 43
6.3.10 MESG_FS_FILE_READ_RELATIVE (0xE20F) ... 45
6.3.11 MESG_FS_FILE_WRITE_ABSOLUTE (0xE210) ... 46
6.3.12 MESG_FS_FILE_WRITE_RELATIVE (0xE211) ... 48
6.3.13 MESG_FS_FILE_GET_SIZE (0xE213) ... 49
6.3.14 MESG_FS_FILE_GET_SIZE_IN_MEM (0xE215) .. 51
6.3.15 MESG_FS_FILE_GET_SPECIFIC_FILE_FLAGS (0xE214) .. 52
6.3.16 MESG_FS_SYSTEM_TIME (0xE23D) .. 53

6.4 FS-Crypto Commands ... 54
6.4.1 MESG_FS_CRYPTO_ADD_USER_KEY_INDEX (0xE245) .. 54
6.4.2 MESG_FS_CRYPTO_SET_USER_KEY_INDEX (0xE246) ... 55
6.4.3 MESG_FS_CRYPTO_SET_USER_KEY_VAL (0xE247) ... 56

6.5 Fit Commands .. 57
6.5.1 MESG_FS_FIT_FILE_INTEGRITY_CHECK (0xE250) .. 57

6.6 ANT-FS Commands ... 58
6.6.1 MESG_FS_ANTFS_OPEN (0xE231) .. 58
6.6.2 MESG_FS_ANTFS_CLOSE (0xE232) .. 59
6.6.3 MESG_FS_ANTFS_CONFIG_BEACON (0xE233) .. 60
6.6.4 MESG_FS_ANTFS_SET_AUTH_STRING (0xE234) .. 62
6.6.5 MESG_FS_ANTFS_SET_BEACON_STATE(0xE235) ... 64
6.6.6 MESG_FS_ANTFS_PAIR_RESPONSE (0xE236) ... 65
6.6.7 MESG_FS_ANTFS_SET_LINK_FREQ (0xE237) ... 66
6.6.8 MESG_FS_ANTFS_SET_BEACON_TIMEOUT (0xE238) .. 67
6.6.9 MESG_FS_ANTFS_SET_PAIRING_TIMEOUT (0xE239) ... 68
6.6.10 MESG_FS_ANTFS_REMOTE_FILE_CREATE_EN (0xE23A) ... 69

6.7 ANT-FS Reponses ... 70

4 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.7.1 Get Command Pipe (0xE23B) ... 70
6.7.2 Set Command Pipe (0xE23C) ... 71

6.8 ANT-FS Events .. 72
6.9 Response Codes ... 75

 5 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

1 Introduction

ANT-FS is an extension of the ANT protocol that facilitates the secure and automated transfer of files over

a wireless ANT connection. Communication and handshaking occurs between an ANT-FS host and ANT-FS

client device. The host device is often a data aggregator, or hub for transport to a database or web

service. It is often implemented on a device such as a PC, tablet or Smartphone. Such devices often have

lesser power constraints, run with an operating system and have a rich development environment.

Development on these devices is facilitated by ANT-FS Host libraries that may be ported to any target

operating system.

Conversely the client is often the data collector. The Client typically collects data from sensors and stores

this data until it is in the vicinity of an ANT-FS host, which may then authenticate with the client and

download the data. Client devices are often implemented on very resource constrained systems which

operate on small batteries and have no or limited operating systems. For such systems the ANT-FS client

functionality must be implemented by following embedded reference code examples. Furthermore, a file

system must be implemented to allow data to be stored and retrieved as required. This is a cumbersome

process that requires significant development time and an MCU capable of supporting the space and

processing requirements of an ANT-FS client. The Integrated ANT-FS Client feature, available on some

ANT chips, eliminates this problem by implementing the entire ANT-FS Client directly on the chip.

Furthermore, a file system is implemented and completely managed by the ANT chip, further reducing the

time and complexity of designing an ANT-FS client.

Figure 1. Standard vs. Integrated ANT-FS Implementation

The EEPROM memory device is connected directly to the ANT chip facilitating rapid development, reduced

BOM costs and quick time to market for ANT-FS Client enabled devices.

MCU

ANT-FS

ANT

EEPROM MCU

ANT

ANT-FS
EEPROM

Standard ANT-FS Client

Implementation
Integrated ANT-FS Client

6 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

2 Reference Documents

It is strongly recommended that the following documents be read and understood before using this

document.

Table 1. Reference Documents

Document# Document Title

D00000652 ANT Message Protocol and Usage

D00001025 ANT File Share (ANT-FS) Technology

D00001152 ANT-FS Reference Design User Manual

D00001275 ANT+ FIT File Protocol

3 File System

The Integrated ANT-FS Client includes support for a full robust file system, further simplifying the

development effort to bring products to market. The file system requires that an external EEPROM be

connected directly to the ANT chip for data storage (Figure 1). For interconnect information and supported

EEPROM devices please consult the datasheet of the specific ANT part.

The integrated file system (FS) includes support for a directory structure, which is identical to that

defined by the ANT-FS Technical Specification. Files may be downloaded, uploaded, and erased as

required by the application MCU, or remotely by the ANT-FS Host. Concurrency is fully managed by the file

system to ensure data consistency throughout transactions. For example, if the application MCU wishes to

write data to a file that is currently being accessed by an ANT-FS host, it will be prevented from doing so.

The entire file system is fully exposed to the application MCU over an extended serial message protocol.

This simple interface allows files to be created, downloaded, and erased. Flags may be set to further

define behavior. On the wireless side, the file system is exposed over the ANT-FS protocol. Up to 8 files

may be opened concurrently at any given time. As file handles are shared by the application process and

by the ANT-FS Host, the application processor should be careful to have at least one file handle free if

ANT-FS is enabled.

Files may be stored as raw data bytes, or they may be encrypted with AES -128 encryption. This feature is

easily enabled by specifying the flag bit of a file as ‟Crypto‟ upon creation. Once a file is flagged as

„Crypto‟, it will be encrypted by a specified key. The file is stored in the EEPROM in its encrypted format.

Any transmission of the file over ANT is also done using the encrypted form of the file. If a file is opened

for reading with the flag set to „Crypto‟, it will be decrypted using the specified key and sent in its original

format to the application MCU. Up to ten 32 byte keys may be stored and used for encryption and

decryption of data.

Another feature of the integrated file system is the ability to store FIT file formats. By specifying a file

type as “FIT” upon creation of a file, the file system will automatically update the FIT header for the file

and manage the file length and CRC. As a result, the host MCU need only send the FIT definitions and

data records as needed.

3.1 File System Configuration

Only EEPROMs with an SPI interface are supported. Please see ANT part datasheet for a complete

description of what EEPROM parts are suitable for use. Before any FS or ANT-FS commands may be sent,

the memory device must first be initialized by sending the number of bytes per EEPROM page (a page is

the maximum number of bytes that may be written to the EEPROM in a single transaction) and the number

of bytes used to address the EEPROM (2 or 3 bytes depending on the size of the EEPROM).

 7 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

A memory device must be formatted before its first use. This is accomplished by using the Format Memory

command and requires the user input the number of sectors and sectors used per page. Files are always

stored as units of sector. Sector size can be defined by the application and will depend on whether the

system expects to store a small number of large files, or a large number of small files. Pages are fixed in

size for a specific EEPROM, please consult the specific EEPROM datasheet for page size. The diagram

below describes the relationship between sectors and pages.

Figure 2. Sample EEPROM Configuration

Once the memory device has been initialized and formatted, the file system must then be initialized by

sending the Memory Init command. Please see Figure 3 for a flow chart of the steps required to initialize

the memory device and the file system.

Following the Memory Init command the application MCU may first read out the directory structure of the

EEPROM to check and which files currently exist. Files may subsequently be created, uploaded,

downloaded and erased as desired. To upload or download a file, the file must exist in the directory

structure; if not the file must be created using the Create File command. Optionally files may be created

by an ANT-FS Host over the ANT-FS protocol, however this option must first be enabled by the host MCU

with the appropriate command. When creating a new file , care must be taken to ensure the correct file

type and flags are specified. Please consult the ANT-FS Technical Specification for details regarding the

use of the ANT-FS directory and associated flags and file types. After a file has been created, either by

the application MCU or the ANT-FS host, it may be opened for reading and writing. There are several flags

associated with this operation, allowing the application MCU to append to an existing file or write a crypto

file. There are several functions for reading and writing files, giving the application MCU the option of

writing to absolute or relative addresses within the file.

PAGE 0

PAGE 1

PAGE 2

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10

PAGE 11

PAGE 12

PAGE 13

PAGE 14

PAGE 15

SECTOR 0

File 2

File 0

File 1

SECTOR 1

SECTOR 2

SECTOR 3

SECTOR 4

SECTOR 5

SECTOR 6

SECTOR 7

EEPROM

Defined

User

Defined

File

Mapping

8 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Figure 3. Initializing FS

After open files have received updates, the application MCU should save the changes to the directory

structure by calling the Directory Save command. This ensures that the changes made to individual files

are saved to the directory structure, ensuring consistency between what is reported in the directory and

what actually exists on the EEPROM. This command should always be called before powering off the ANT

chip. The directory may also be rebuilt to condense its size and remove any invalidated entries by calling

the Directory Rebuild command.

3.2 Crypto Files

The Integrated FS/ANT-FS feature includes support for AES-128 encryption of files. Encrypted files are

stored in an encrypted format on the EEPROM enabling secure over -the-air transfer of sensitive data. To

enable encryption of a file, an AES-128 encryption key must first be specified. Keys are 32 bytes in length

and may be stored in the non-volatile memory controlled by the ANT chip. Up to 10 keys may be stored.

The index of the key to use must be specified before encryption or decryption takes place. Alternatively a

session key may be specified. Session keys are not stored in non-volatile memory are are only valid until

the part is reset.

Once a key is specified, encryption can be enabled by setting bit 2 of the General Flag . The General Flag

is specified in the directory entry of the file and may be set upon creation of the file. For complete details

please consult the ANT-FS Technical Specification. Figure 4 depicts the General Flag and the placement of

the Crypto bit.

Once a file is flagged with the Crypto bit, the file must be opened with a Crypto enabled file handle . This

is accomplished by setting the Crypto bit in the „Open Flags‟ field when opening a file. Once opened, any

data written to the file handle will be encrypted using the specified key. Any data read from the file

handle will be decrypted using the specified key. Only one Crypto file handle may be used at any given

time.

Intiialize Memory Device

(0xE220)

Format

Required?

Format Memory Device

(0xE201)

Intiialize Memory

(0xE200)

 9 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Figure 4. Setting Crypto bit in General File Flags

An encrypted file may be opened without the Crypto bit, in which case any data read will be in the

encrypted format. This allows the application MCU to decrypt the data using the correct key. This is useful

if, for example, designing a PC application that needs to work with USB devices that may not have the

crypto feature.

The creation and exchange of the 32 byte encryption key is not defined by the Integrated FS/ANT-FS

feature. This process must be designed and specified for a given application to ensure required levels of

protection.

3.3 FIT Files

The integrated FS system also includes support for FIT file types. A file may be specified as a FIT file by

specifying the File Data Type field to be 0x80. This must be specified when creating the file.

Once a file type has been specified as FIT, the FIT header and CRC will be managed by the file system. All

the application MCU needs to do is to send the initial file header and any message definitions and data

messages as required for a particular FIT file type.

FIT files may also be encrypted. To do this the FIT file must be opened with the crypto file handle and

follow the same procedures as any crypto file.

4 ANT-FS Client

The Integrated ANT-FS engine includes full support for an ANT-FS Client as described by the ANT-FS

Technical specification. Coupled with the integrated FS feature, development of fully functional file based

ANT devices is greatly simplified, reducing the computational burden from the application MCU and

reducing NRE time and costs.

The Integrated ANT-FS Client is configured and controlled using an extended serial interface. An ANT-FS

beacon may be assigned to any or all ANT channels available on the device. To configure an ANT-FS

beacon, please follow the procedure below:

Set Network Key. Use the regular serial command (Msg ID 0x46). For ANT+ implementations this should

be the ANT+ Managed Network key.

Index

7 6 5 4 3 2 1 0

| | | | | | X X --- Reserved

| | | | | X-------- Crypto Flag

| | | | X---------- Append

| | | X------------ Archive

| | X-------------- Erase

| X---------------- Write

X------------------ Read

File Data Type

Identifier

Data Type Special Flags

General File Flags

File Size

Date

ANT-FS Directory

Structure

General File Flag

10 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Assign channel as master. Each channel that is to run the ANT-FS Client should be assigned as a

master using the regular assign channel command (Msg ID 0x42)

Set the channel id of each ANT-FS channel. The channel ID of each ANT-FS channel should be set using

the channel id command (Msg ID 0x51). For ANT+ specific implementations the portions of the channel ID

may be specified by the profile.

Configure the beacon using the extended serial message 0xE233.

Set Authentication strings if required using extended serial message 0xE234. By default no friendly

name and no passkey is set.

Set beacon timeout (0xE238) and pairing timeout (0xE239) if required. The defaults are 10s and 30s

respectively.

Configure the beacon RF frequency for each ANT-FS channel using the extended serial message

0xE237. A beacon can be disabled by setting the frequency to 0xFF.

Start ANT-FS using extended serial command 0xE231. The ANT-FS beacon will begin to broadcast on all

channels assigned as ANT-FS. After this a LINK_EVENT will occur on channel 0xFF, meaning that the ANT-

FS engine has gone to LINK without an active ANT-FS channel.

If an ANT-FS Host connects to the client an AUTH_EVENT will be sent along with the corresponding ANT

channel number and all other ANT-FS channels shall broadcast the beacon indicating “BUSY” state.

Once the ANT-FS beacon has been configured, and the client has commenced beaconing in the link state,

an ANT-FS host may attempt a connection. If the host attempts to pair to the client, a PAIRING_REQUEST

event will occur. The application MCU may accept or reject this request using the extended serial

command 0xE236. If authentication passes, the client shall move to the TRANSPORT state, if

authentication fails the client will move to the LINK state. Both of these conditions will be indicated with

an event.

Once in the TRANSPORT state, the ANT-FS engine will generate start and stop events for file upload and

download. This allows the application MCU to be aware of when files have been read, updated and also

when these operations are in progress allowing it to manage its resources appropriately.

The application MCU is also informed when a Command Pipe command has been received and if it has

been processed by the ANT-FS engine automatically.

4.1 Authentication Methods

The integrated ANT-FS Client supports three methods of authentication – passthough, passkey and

pairing. The actual method used is specified by setting the appropriate bit in the ANT-FS beacon status

byte. The figure below shows the logic used by the ANT-FS engine to accept or reject a particular method

based on what bit is set in the beacon.

 11 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Figure 5. Authentication Decision Tree Based on Beacon Indicator

Please note that for the figure above a „pass‟ for a pairing requests assumes the application MCU accepted

the pairing request.

4.2 Command Pipe

The integrated ANT-FS Client also has support for command pipes. The client may send or receive

commands over the ANT-FS command pipe using the extended serial requests 0xE23B and 0xE23C

respectively.

Upon receiving a command on the ANT-FS command pipe the application MCU will be notified with one of

the following events:

MESG_FS_ANTFS_EVENT_CMD_RECIEVED (0x0A)

MESG_FS_ANTFS_EVENT_CMD_PROCESSED (0x0B)

For details of each event please consult section 6.8.

The following commands are processed by the integrated ANT-FS engine:

Create File (must be enabled by application MCU)

Set System Time

Get System Time

Please consult the ANT-FS Technical Specification for more details on the ANT-FS Command pipe.

5 Extended Serial Messaging

To enable the functionality of the integrated FS/ANT-FS feature the serial protocol between the

application MCU and the ANT chip had to be extended to accommodate the required number of serial

messages and event. In addition to using 2 byte message ID‟s, the extended serial protocol is more

dynamic than the standard ANT serial protocol. For all commands outside of the FS/ANT-FS function the

standard serial protocol still applies, as detailed by the ANT Message Protocol and Usage document .

Host Requests Host Requests Host Requests

PASS PASS PASS FAIL

Beacon Indicates

PASSTHROUGH (0)

Beacon Indicates

PAIRING (2)

Beacon Indicates

PASSKEY (3)

passkey
passthrough

passkey passkey
passthrough passthrough

pairing pairing pairing

PASS PASS PASSFAILFAIL

12 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Figure 6. Serial Message General Packet Structure

The extended serial protocol defines three types of messages – commands, requests and

responses/events. Compared to a standard serial message, an extended serial message is indicat ed by

setting the top nibble message id to 0xE. The type of extended message is indicated in the following

nibble (Command = 0xE2, Request = 0xE1 and Response/Event = 0xE0). The following byte is the

message id, followed by the payload of the message.

The checksum for a standard and extended serial message is calculated as the XOR of all bytes including

the sync byte. The length of a standard message includes the number of bytes in the payload of the

message, whereas for extended serial messages the length includes the payload + 1 byte. As with the

standard serial protocol, the use of optional padding bytes is also recommended for systems that are slow

to react to hardware flow control (when using asynchronous serial interface).

In general, a command sent by the MCU to ANT elicits a response. A request elicits a command and an

event is unsolicited from ANT to the MCU. This behavior is illustrated in the diagram below.

1 byte 1 byte 1 byte 1 byte1 byte1 byte

Sync Length Message ID Payload Chksum

1 byte 1 byte 1 byte1 byte1 byte

Sync Length Message ID Payload Chksum

76543210

||||XXXX--Extended Message type (2=command, 1=request, 0=Response/Event)

XXXX------Extended message indicator (0xE)

Standard Serial Message

Extended Standard Serial Message

 13 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Figure 7. Extended Serial Message Types

5.1 Commands (0xE2)

Extended serial commands are used to execute specific commands on the ANT chip , or to get information

about the state of the FS/ANT-FS engine. When sent by the application MCU they elicit a response from

the ANT chip. If a message request is made by the application MCU, then ANT will send a command

message in response.

The structure of a command is ident ical to that described by Figure 6, with the message indicator set to 2.

The specific command to execute is indicated by the second byte of the message id. The payloa d is

specific to a particular command and may be completely empty. The figure below describes an extended

serial command.

Figure 8. Extended Serial Command

When a command is requested by the application MCU the first byte of the payload of the command will

generally be the FS Response Code which indicates the success or failure of the request. However, there

are some cases where this is not true. For example, the Time command request does not have an

associated response code..

5.2 Requests (0xE1)

Extended serial requests are used by the application MCU to request information from the ANT chip. The

information requested comes to the MCU in the form of a command.

Command (0xE2)

Response (0xE0)

Request (0xE1)

Command (0xE2)
Event (0xE0)

Command/Response Request/Command Events

MCU ANT MCU ANT MCU ANT

1 byte 1 byte 1 byte 1 byteX byte1 byte

Sync Length Message ID Payload Chksum

0xE2 Message ID

14 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

The structure of a request command is identical to that described by Figure 6. The first two bytes of the

payload indicate what command is being requested. The remaining payload may be used to specify other

criteria for the request, as require by the specific command.

Figure 9. Extended Serial Request

5.3 Responses/Events (0xE0)

Responses are used to indicate the success or failure of a command. Events are a special form of

response messages. They are unsolicited messages that come from the ANT chip and indicate some type

of information which the application MCU must handle.

The structure of a Response/Event message is identical to that described by Figure 6. The payload of

responses includes the id of the message being responded to as well as the response code and associated

payload.

Figure 10. Extended Serial Response

The payload of events includes the event command id (0xE230) followed by the event code and the

optional payload.

1 byte 1 byte 1 byte 1 byteX byte1 byte

Sync Length Request ID Payload Chksum

0xE1 0x00

1 byte 1 byte

Requested

Command

0xE2 Message ID

1 byte 1 byte 1 byte 1 byte1 byte1 byte

Sync Length Response ID Response Code Chksum

0xE0 0x00

1 byte 1 byte

Command ID

0xE2 Message ID

 15 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Figure 11. Extended Serial Event

6 ANT Message Summary

The following tables summarize all of the extended serial messages. Each is described in detail in the

subsequent sections. The DLL library interface function is also described and used to explain the general

use of a specific function.

1 byte 1 byte 1 byte 1 byteX bytes1 byte

Sync Length Response ID

Event

Code Chksum

0xE0 0x00

1 byte 1 byte

Event ID

0xE2 0x30

1 byte

Payload

16 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 2. Summary of Commands and Responses

Class ANT PC Interface Function Message Structure

Memory Device
Commands

ANTFS_InitEEPROMDevice()
6.1.1 (p20)

4 0xE220 Page Write Size
(2 bytes)

Address Bytes Cfg
(1 byte)

Response 4 0xE000 0xE220 FS Response Code
(1 byte)

FS Commands ANTFS_InitFSMemory()
 6.2.1 (p21)

1 0xE200

Response 4 0xE000 0xE200 FS Response Code
(1 byte)

ANTFS_FormatFSMemory()
6.2.2 p(22)

5 0xE201 FS Sectors
(2-bytes)

Pages Per Sector
(2-bytes)

Response 4 0xE000 0xE201 FS Response Code
(1 byte)

ANTFS_SaveDirectory()
6.2.2 p(22)

5 0xE207

Response 4 0xE000 0xE207 FS Response Code
(1 byte)

ANTFS_RebuildDirectory()
6.2.4 p(24)

1 0xE209

Response 4 0xE000 0xE209 FS Response Code
(1 byte)

ANTFS_FileDelete()
6.2.5 p(25)

2 0xE20C File Handle
(1-byte)

Response 4 0xE000 0xE20C FS Response Code
(1 byte)

ANTFS_FileClose()
6.2.6 p(26)

2 0xE20D File Handle
(1-byte)

Response 4 0xE000 0xE20D FS Response Code
(1 byte)

ANTFS_SetFileSpecificFlags()
6.2.7 p(28)

3 0xE212 File Handle
(1-byte)

Flags
(1-byte)

Response 4 0xE000 0xE212 FS Response Code
(1 byte)

ANTFS_DirectoryReadLock()
6.2.8 p(29)

2 0xE216 Lock
(1 –byte)

Response 4 0xE000 0xE216 FS Response Code
(1 byte)

ANTFS_SetSystemTime()
0 p(30)

5 0xE23D Current Time
(4-bytes)

Response 4 0xE000 0xE23D FS Response Code
(1 byte)

FS Requests ANTFS_GetUsedSpace()_ 3 0xE100 0xE202

 17 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.3.1 p(31)

Response 6 0xE202 FS Response Code
(1 byte)

Used Space
(4-bytes)

ANTFS_GetFreeSpace()
6.3.2 p(32)

3 0xE100 0xE203

Response 6 0xE203 FS Response Code
(1 byte)

Free Space
(4-bytes)

ANTFS_FindFileIndex()
6.3.3 p(33)

7 0xE100 0xE204 File Data Type
(1-byte)

File Sub Type
(1-byte)

File Number
(2-bytes)

Response 4 0xE204 FS Response Code
(1 byte)

File Index
(2-bytes)

ANTFS_DirectoryReadAbsolute()
6.3.4 p(35)

8 0xE100 0xE205 Offset
(4-bytes)

Size
(1-byte)

Response 3+X 0xE205 FS Response Code
(1 byte)

Size Read
(1-byte)

Read Payload
(X-bytes)

ANTFS_DirectoryReadEntry()
6.3.5 p(36)

5 0xE100 0xE206 File Index
(2-bytes)

Response 18 0xE206 FS Response Code
(1 byte)

ANTFS Directory Entry
(16 bytes)

ANTFS_DirectoryGetSize()
6.3.6 p(37)

3 0xE100 0xE208

Response 6 0xE208 FS Response Code
(1 byte)

Directory Size
(4-bytes)

ANTFS_FileCreate()
0 p(38)

8 0xE100 0xE20A File Index
(2-bytes)

Directory Entry
(6-bytes)

Response 4 0xE20A FS Response Code
(1 byte)

File Index
(2 bytes)

ANTFS_FileOpen()
6.3.8 p(40)

6 0xE100 0xE20B File Index
(2 bytes)

Open Flags
(1-byte)

Response 3 0xE20B FS Response Code
(1 byte)

File Handle
(1-byte)

ANTFS_FileReadAbsolute()
6.3.9 p(43)

9 0xE100 oxE20E File Handle
(1-byte)

Offset
(4-bytes)

Read Size
(1-byte)

Response 3+X 0xE20E FS Response Code
(1 byte)

Size Read
(1-byte)

Read Payload
(X-bytes)

ANTFS_FileReadRelative()
6.3.10 p(45)

5 0xE100 0xE20F File Handle
(1-byte)

Read Size
(1-byte)

Response 3+X 0xE20F FS Response Code
(1 byte)

Size Read
(1-byte)

Read Payload
(X-bytes)

ANTFS_FileWriteAbsolute()
6.3.11 p(46)

9+X 0xE100 0xE210 File Handle
(1-byte)

Offset
(4-bytes)

Write Size
(1-byte)

Write Payload
(X-bytes)

Response 3 0xE210 FS Response Code
(1 byte)

Size Written
(1-byte)

ANTFS_FileWriteRelative() 5+X 0xE100 0xE211 File Handle Write Size Write Payload

18 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.3.12 p(48) (1-byte) (1-byte) (X-bytes)

Response 3 0xE211 FS Response Code
(1 byte)

Size Written
(1-byte)

ANTFS_FileGetSize()
6.3.13 p(49)

4 0xE100 0xE213 File Handle
(1-byte)

Response 4 0xE213 FS Response Code
(1 byte)

File Size
(4-bytes)

ANTFS_FileGetSizeInMem()
6.3.14 p(51)

4 0xE100 0xE215 File Handle
(1-byte)

Response 6 0xE215 FS Response Code
(1 byte)

File Size
(4-bytes)

ANTFS_FileGetSpecificFlags()
6.3.15 p(52)

4 0xE100 0xE214 File Handle
(1-byte)

Response 3 0xE214 FS Response Code
(1 byte)

File Flags
(1-byte)

ANTFS_FileGetSystemTime()
6.3.16 p(53)

3 0xE100 0xE23D

Response 5 0xE23D Current Time
(4-bytes)

Crypto
Commands

ANTFS_CryptoAddUserKeyIndex()
6.4.1 p(54)

34 0xE245 Key Index
(1-byte)

User Key
(32-bytes)

Response 4 0xE000 0xE245 FS Response Code
(1 byte)

ANTFS_CryptoSetUserKeyIndex()
6.4.2 p(55)

2 0xE246 Key Index
(1-byte)

Response 4 0xE000 0xE246 FS Response Code
(1 byte)

ANTFS_CryptoSetUserKeyVal()
6.4.3 p(56)

33 0xE247 User Key
(32-bytes)

Response 4 0xE000 0xE247 FS Response Code
(1 byte)

FIT Commands ANTFS_FitFileIntegrityCheck()
6.5.1 p(57)

2 0xE250 File Handle
(1-byte)

Response 4 0xE000 0xE250 FS Response Code
(1 byte)

ANTFS
Commands

ANTFS_OpenBeacon()
6.6.1 p(58)

1 0xE231

Response 4 0xE000 0xE231 FS Response Code
(1 byte)

ANTFS_CloseBeacon()
6.6.2 p(59)

1 0xE232

Response 4 0xE000 0xE232 FS Response Code
(1 byte)

ANTFS_ConfigBeacon() 9 0xE233 Beacon Device Type Beacon Manuf Type Beacon Auth Type Beacon Status

 19 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.6.3 p(60) (1-byte) (2-bytes) (1-byte) (1-byte)

Response 4 0xE000 0xE233 FS Response Code
(1 byte)

ANTFS_SetAuthString()
6.6.4 p(62)

2+X 0xE234 String Enum
(1-byte)

String
(0-16 bytes)

Response 4 0xE000 0xE234 FS Response Code
(1 byte)

ANTFS_SetBeaconState()
6.6.5 p(64)

2 0xE235 Beacon Status
(1-byte)

Response 4 0xE000 0xE235 FS Response Code
(1 byte)

ANTFS_PairResponse()
6.6.6 p(65)

2 0xE236 Response
(1-byte)

Response 4 0xE000 0xE236 FS Response Code
(1 byte)

ANTFS_SetLinkFrequency()
6.6.7 p(66)

2 0xE237 Channel Number
(1-byte)

RF Freq
(1-byte)

Response 4 0xE000 0xE237 FS Response Code
(1 byte)

ANTFS_SetBeaconTimeout()
6.6.8 p(67)

2 0xE238 Timeout
(1-byte)

Response 4 0xE000 0xE238 FS Response Code
(1 byte)

ANTFS_SetPairingTimeout()
6.6.9 p(68)

2 0xE239 Timeout
(1-byte)

Response 4 0xE000 0xE239 FS Response Code
(1 byte)

ANTFS_EnableRemoteFileCreate()
6.6.10 p(69)

2 0xE23A Enable
(1-byte)

Response 4 0xE000 0xE23A FS Response Code
(1 byte)

ANTFS
Requests

ANTFS_GetCmdPipe()
6.7.1 p(70)

5 0xE100 0xE23B Offset
(1-byte)

Read Size
(1-byte)

Response 2+X 0xE23B Size Read
(1-byte)

Read Payload
(X-bytes)

ANTFS_SetCmdPipe()
6.7.2 p(71)

5+X 0xE100 0xE23C Offset
(1-byte)

Write Size
(1-byte)

Write Payload
(X bytes)

Response 2 0xE23C Size Written
(1-byte)

20 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.1 Memory Device Commands

6.1.1 MESG_MEMDEV_EEPROM_INIT (0xE220)

BOOL ANTFS_InitEEPROMDevice(USHORT usPageSize_, UCHAR ucAddressConfig_);

Init command must be called prior to issuing any FS command or requests. Currently, only SPI interface (min

2MHz rate) is supported with EEPROM devices. Data is clocked out MSB first and the clock polarity

(CPOL/CPHA) is 1 and 1 respectively. The chips select line (CS) is used and toggles between write accesses

and on boundaries.

Configuration fields should be specified from information found from the EEPROM datasheet. Successful

initialization results in FS_NO_ERROR response code.

Page Write Size is the physical page write boundary of the EEPROM Device. For EEPROM, th is is considered

the maximum number of bytes that can be written in one pass and it must be 2^x value. The address bytes

configuration field specifies the required number of bytes used to address the physical memory location on

the EEPROM. For example, a 1MBit EEPROM device requires 3 address bytes.

Table 3. Initialize Memory Device Command Description

Parameters Type Range Description

Size UCHAR 4 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x20

Page Write Size USHORT 0..MAX(USHORT) Number of bytes that can be contiguously

written to EEPROM at a time

Address Bytes Configuration UCHAR 0-1 0: three byte addressing

1: two byte addressing

 21 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 4. Initialize Memory Device Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x20

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR.

Otherwise command was not successful

Example Usage

ANTFS_InitEEPROMDevice(256, 0); // 256 bytes per page, 3 byte address schem

6.2 File System Commands

6.2.1 MESG_FS_INIT_MEMORY (0xE200)

BOOL ANTFS_InitFSMemory();

Initializes existing file system from saved directory information in NVM. Unsaved information on open files will

be lost. Init command must be called prior to using any FS related commands or requests. Init command

must also be called after issuing FS Format Memory. Also resets encryption key used for crypto operations.

Successful initialization results in FS_NO_ERROR response code.

Table 5. Initialize File System Memory Command Description

Parameters Type Range Description

Size UCHAR 1 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x00

22 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 6. Initialize File System Memory Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x00

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR.

Otherwise command was not successful

Example Usage

ANTFS_InitFSMemory(); // Initialize file system state variables

6.2.2 MESG_FS_FORMAT_MEMORY (0xE201)

BOOL ANTFS_FormatFSMemory(USHORT usNumberOfSectors_, USHORT usPagesPerSector);

Command used to create a new empty file system. Any existing directory information and file s will be

discarded. Minimum number of sectors must be 2 (1 for directory and 1 for each file). Successful format

operation results in FS_NO_ERROR response code.

Number of Sectors * Num Pages per sector * Page Size must not exceed the size of the memory de vice. If

inappropriate values are entered, format may succeed, but FS will be unusable. The FS sector size is defined

by the Num Pages per Sector field where the page size is defined in MEMDEV_EEPROM_INIT for EEPROM

device.

Specifying the correct number of sectors and pages per sector is application dependent. If the system is

expected to have a small number of large files then it may be more efficient to have fewer, larger sectors.

Conversely, a large number of small files would require a setup that has more, smaller sector defined.

However, the efficiencies gained will vary greatly per application and must be evaluated on a case by case

basis.

 23 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 7. Format File System Command Description

Parameters Type Range Description

Size UCHAR 5 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x01

Sectors USHORT 0..MAX(USHORT) Number of sectors in file system.

Pages per sector USHORT 0..MAX(USHORT) Number of pages per sector.

Table 8. Initialize File System Memory Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x01

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR.

Otherwise command was not successful

Example Usage

ANTFS_FormatFSMemory(32, 8); // 32 sectors, 8 pages per sector

 // Assuming 256 byte page, EEPROM size =

 // 256X32X16 = 65536 bytes

6.2.3 MESG_FS_DIRECTORY_SAVE (0xE207)

BOOL ANTFS_SaveDirectory();

Save all open file information into the directory NVM. This should be called before device power off or any

unsaved data will be lost. Successful save operation results in FS_NO_ERROR response code.

24 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 9. Directory Save Command Description

Parameters Type Range Description

Size UCHAR 1 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x07

Table 10. Directory Save Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x07

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR.

Otherwise command was not successful

Example Usage

ANTFS_SaveDirectory(); // Updates directory with any changes in file system

6.2.4 MESG_FS_DIRECTORY_REBUILD (0xE209)

BOOL ANTFS_DirectoryRebuild();

Rebuilds FS directory and condenses directory size by removing invalidated entries. Rebuilding directory also

updates auto file index counter.

This command is automatically called whenever a directory is requested from the EEPROM. Any time a

number of files is deleted from the file system this command should be called.

Successful rebuild results in FS_NO_ERROR response code.

 25 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 11. Directory Re-build Command Description

Parameters Type Range Description

Size UCHAR 1 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x09

Table 12. Directory Re-build Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x09

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR.

Otherwise command was not successful

Example Usage

ANTFS_DirectoryRebuild(); // Rebuild FS directory

6.2.5 MESG_FS_FILE_DELETE (0xE20C)

BOOL ANTFS_FileDelete(UCHAR ucFileHandle_);

Delete existing open file. Delete permission must be set on file handle. On successful deletion (FS_NO_ERROR

response code), the file handle is freed. If FS_MEMORY_WRITE_ERROR is retu rned, memory occupied by file

is lost but the handle is freed. Any other response codes results in file deletion failure and the file handle

remains associated to the open file.

26 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 13. Delete File Command Description

Parameters Type Range Description

Size UCHAR 2 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x0C

File Handle UCHAR 0..MAX(UCHAR) File handle of opened file.

Table 14. Delete File Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x0C

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

FS_MEMORY_WRITE_ERROR

Otherwise command was not successful

Example Usage

ANTFS_FileDelete(7); // Delete file associated with file handle 7.

6.2.6 MESG_FS_FILE_CLOSE (0xE20D)

BOOL ANTFS_FileClose(UCHAR ucFileHandle_);

Close an open file handle. Any open file handle information is saved to the directory.

FS_NO_ERROR response code is returned if file close operation is successful (with the exceptions discussed in

FIT File and Crypto FIT File). Any other response code resulted in file close failure and the file h andle still

assigned to the file.

Crypto File

 27 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

When specifying a crypto handle (handle with encryption/decryption properties), the crypto handle is

freed/unassigned when the file is closed successfully (FS_NO_ERROR, with exceptions discussed in Crypto FIT

File).

FIT File

When closing a handle with write permissions (write/erase/append flag) to a FIT file, the file‟s FIT structure

is updated with changes made to the file. The update consists of updating the data size fie ld in the FIT

header and appending a 2 byte CRC to the end of the file. File update failures result in the following response

codes but allows the file to be closed:

FS_FIT_FILE_HEADER_ERROR - FIT file has incorrect header information or < minimum header s ize

FS_FIT_FILE_SIZE_INTEGRITY_ERROR - FIT file size does not match calculated size from FIT header info

FS_MEMORY_NO_FREE_SECTORS_ERROR – no free memory to append CRC to file

When closing a handle with read-only permissions to a FIT file, no changes are made to the file unless there

is a non-read locked write handle still opened on the file. If the file is valid, then the file is resized by

removing the 2-byte CRC at the end of the file.

Crypto FIT File

Closing a crypto handle to an encrypted FIT file results in the same behaviour described in FIT file. When

closing an encrypted FIT file from a non encryption/decryption handle, the file contents will not change,

however a non-FS_NO_ERROR response code will be returned.

Table 15. Close File Command Description

Parameters Type Range Description

Size UCHAR 2 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x0D

File Handle UCHAR 0..MAX(UCHAR) File handle of opened file.

28 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 16. Close File Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x0D

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

FS_FIT_FILE_HEADER_ERROR

FS_FIT_FILE_SIZE_INTEGRITY_ERROR

FS_MEMORY_NO_FREE_SECTORS_ERROR

Otherwise command was not successful

Example Usage

ANTFS_FileClose(7); // Delete file associated with file handle 7.

6.2.7 MESG_FS_FILE_SET_SPECIFIC_FLAGS (0xE212)

BOOL ANTFS_SetFileSpecificFlags(UCHAR ucFileHandle_, UCHAR ucFlags);

Update application defined flags on file, but it is not saved to directory NVM. On success, FS_NO_ERROR is

returned. File flags will be written back to the EEPROM after a directory save command, or when a file handle

is closed.

Table 17. Set Specific File Flags Command Description

Parameters Type Range Description

Size UCHAR 3 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x12

File Handle UCHAR 0..MAX(UCHAR) File handle of opened file.

Flag UCHAR Bit map Defined by specific file data type.

 29 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 18. Set Specific File Flags Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x12

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

ANTFS_SetFileSpecificFlags(7, 0x01); // Set bit 0 of application defined file flag on

handle 7.

6.2.8 MESG_FS_DIRECTORY_READ_LOCK (0xE216)

UCHAR ANTFS_DirectoryReadLock(BOOL bLock_);

When directory is locked, directory information is prevented from changing. When directory is unlocked,

directory information is allowed to change. Locking the directory prevents the following FS operations from

succeeding:

MESG_FS_DIRECTORY_SAVE (0xE207)

MESG_FS_FILE_CREATE (0xE20A)

MESG_FS_FILE_DELETE (0xE20C)

MESG_FS_FILE_CLOSE (0xE20D), when closing write handle or read handle with archive permissions

MESG_FS_DIRECTORY_REBUILD (0xE209)

Attempting to lock a directory that is already locked will result in an error. Attempting to unlock a d irectory

that is already unlocked will result in an error.

It may be useful to lock the directory before requesting it to ensure that the directory is not modified by the

ANT-FS Host simultaneously.

30 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 19. Read Lock Command Description

Parameters Type Range Description

Size UCHAR 2 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x16

Lock UCHAR 0-1 0 = unlock

1 = lock

Table 20. Read Lock Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x16

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

ANTFS_DirectoryReadLock(TRUE); // Lock directory.

6.2.9 MESG_FS_SYSTEM_TIME (0xE23D)

BOOL ANTFS_SetSystemTime(ULONG ulTime_);

When this message ID is used in a command message, the specified starting value of the system time to be

used in FS can be set. If successful, FS_NO_ERROR is returned.

 31 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 21. System Time Command Description

Parameters Type Range Description

Size UCHAR 5 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x3D

System time ULONG 0-MAX(ULONG) Time base to be used for file system.

Table 22. System Time Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x3D

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

ANTFS_SetSystemTime(12389328); // Set time to 12389328s.

6.3 File System Requests

6.3.1 MESG_FS_GET_USED_SPACE (0xE202)

ULONG ANTFS_GetUsedSpace();

Returns number of used bytes in FS in sector sized increments. On success, returns FS_NO_ERROR response

code and the used space value. If any other response code is returned, an invalid used space size value is

returned (0xFFFFFFFF).

32 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 23. Used Space Request Description

Parameters Type Range Description

Size UCHAR 3 Message size

Extended ID Response
UCHAR 0xE1

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x02

Table 24. Used Space Output Description

Parameters Type Range Description

Size UCHAR 6 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x02

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Used space ULONG 0-MAX(ULONG) Bytes used by file system.

0xFFFFFFFF indicates an error condition.

Example Usage

ULONG ulSpace = ANTFS_GetUsedSpace();

if(ulSpace != 0xFFFFFFFF)

 printf(“Used space is %d bytes\n”, ulSpace);

else

 printf(“Error %d\n”, ANTFS_GetLastError());

6.3.2 MESG_FS_GET_FREE_SPACE (0xE203)

ULONG ANTFS_GetFreeSpace();

Returns number of free bytes in FS in sector sized increments. On success, returns FS_NO_ERROR response

code and the free space value. If any other response code is returned, an invalid free space size value is

returned (0xFFFFFFFF).

 33 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 25. Free Space Request Description

Parameters Type Range Description

Size UCHAR 3 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x03

Table 26. Free Space Output Description

Parameters Type Range Description

Size UCHAR 6 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x03

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Used space ULONG 0-MAX(ULONG) Free byte in file system.

0xFFFFFFFF indicates an error condition.

Example Usage

ULONG ulSpace = ANTFS_GetFreeSpace();

if(ulSpace != 0xFFFFFFFF)

 printf(“Space left is %d bytes\n”, ulSpace);

else

 printf(“Error %d\n”, ANTFS_GetLastError());

6.3.3 MESG_FS_FIND_FILE_INDEX (0xE204)

USHORT ANTFS_FindFileIndex(UCHAR ucFileDataType_, UCHAR ucFileSubType_, USHORT usFileNumber_);

Return file index of first file in directory that matches specified identifier. On success, returns FS_NO_ERROR

response code and the file index. If any other response code is returned, an invalid file index is returned

(0x0000).

34 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 27. Find File Index Request Description

Parameters Type Range Description

Size UCHAR 7 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x04

File Data Type UCHAR 0-MAX(UCHAR) File Data Type is application defined. Please

consult FIT documentation for FIT data types.

File Sub Type UCHAR 0-MAX(UCHAR) File Sub Type is application defined. Please

consult FIT documentation for FIT file data

types.

File Number USHORT 0-MAX(USHORT) File number in directory (user defined)

Table 28. File Index Output Description

Parameters Type Range Description

Size UCHAR 6 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x04

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

File Index USHORT 0-MAX(USHORT) File index in FS directory

Example Usage

USHORT usFileIndex = ANTFS_FindFileIndex(1,2,3);

if(usFileIndex!= 0x0000)

 printf(“File index is %dn”, usFileIndex);

else

 printf(“Error %d\n”, ANTFS_GetLastError());

 35 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.3.4 MESG_FS_DIRECTORY_READ_ABSOLUTE (0xE205)

UCHAR ANTFS_ReadDirectoryAbsolute(ULONG ulOffset_, UCHAR ucSize_, UCHAR* pucBuffer_);

Read from absolute offset into directory as if it were an ANTFS directory (16-byte blocks). First entry in

directory consists of a 16-byte ANTFS directory header followed by 16-byte directory entries of each file in

the FS. It is recommended to rebuild the directory before using this command in order to avoid invalid

entries.

On successful reads (FS_NO_ERROR), the returned number of bytes read as well as the payload is returned.

Reading past the end of the directory results in FS_EOF_REACHED_ERROR, however the number of read bytes

and the payload prior to reaching EOF is returned.

Table 29. Directory Read Absolute Request Description

Parameters Type Range Description

Size UCHAR 8 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x05

Offset ULONG 0-MAX(ULONG) Offset in bytes into the directory structure.

Size UCHAR 0-MAX(UCHAR) Number of bytes to read from directory

Table 30. Directory Read Absolute Output Description

Parameters Type Range Description

Size UCHAR 3+X Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x05

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

FS_EOF_REACHED_ERROR

Otherwise command was not successful

Size Read UCHAR 0-MAX(UCHAR) File index in FS directory

Payload UCHAR[X] Array[MAX(UCHAR)] Buffer of bytes read from directory

36 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Example Usage

UCHAR aucSystemTime[4]; // Bytes will be read into this array.

UCHAR ucError = ANTFS_ReadDirectoryAbsolute(8,4,aucSystemTime);

if(ucError == FS_NO_ERROR)

{

 ULONG* pulTime = aucSystemTime;

 printf(“System time in directory header = %d\n”, *pulTime);

}

else

{

 printf(“Error reading from directory %d\n”, ucError);

}

6.3.5 MESG_FS_DIRECTORY_READ_ENTRY (0xE206)

UCHAR ANTFS_DirectoryReadEntry (USHORT usFileIndex_, UCHAR* ucFileDirectoryBuffer_);

Return FS_NO_ERROR response code and ANTFS directory entry for the file matching the specified file index

on successful match. Any other error codes results in an invalid entry being returned (all 0xFF). This

command retrieves the most up to date directory entry, even if the entry has not yet been saved to NVM.

Table 31. Directory Read Entry Request Description

Parameters Type Range Description

Size UCHAR 5 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x06

File Index USHORT 0-MAX(USHORT) Index of file for which to retrieve directory

entry.

 37 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 32. Directory Read Entry Output Description

Parameters Type Range Description

Size UCHAR 18 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x06

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Directory UCHAR[16] Array[16] ANTFS directory structure

Example Usage

DirectoryEntryStruct stDirEntry;

UCHAR ucError = ANTFS_DirectoryReadEntry(1,(UCHAR*) &stDirEntry);

if(ucError == FS_NO_ERROR)

{

printf(“File Index 1 file size = %d\n”, stDirEntry.ulFileSize);

}

else

{

 printf(“Error reading from directory %d\n”, ucError);

}

6.3.6 MESG_FS_DIRECTORY_GET_SIZE (0xE208)

ULONG ANTFS_DirectoryGetSize();

Returns size in bytes as if it were an ANTFS directory (16-byte blocks). On success, returns FS_NO_ERROR

response code and the ANTFS directory size value. If any other response code is returned, an invalid ANTFS

directory size value is returned (0xFFFFFFFF).

Table 33. Directory Size Request Description

Parameters Type Range Description

Size UCHAR 3 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x08

38 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 34. Directory Size Output Description

Parameters Type Range Description

Size UCHAR 6 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x08

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Directory size ULONG 0-MAX(ULONG) Size of directory in bytes

0xFFFFFFFF indicates invalid

Example Usage

ULONG ulDirectorySize= ANTFS_DirectoryGetSize();

if(ulDirectorySize!= 0xFFFFFFFF)

 printf(“Directory size is %d\n”, ulDirectorySize);

else

 printf(“Error %d\n”, ANTFS_GetLastError());

6.3.7 MESG_FS_FILE_CREATE (0xE20A)

USHORT ANTFS_FileCreate(USHORT usFileIndex_, UCHAR ucFileDataType_, ULONG ulFileIdentifier_, UCHAR

ucFileDataTypeSpecificFlags_, UCHAR ucGeneralFlags);

Allocates a free sector and saves directory entry of the new file. If 0x0000 is supplied as file index, FS will

auto generate a valid index for the file, otherwise a valid index must manually be supplied. Directory entry

information to be specified comprises of the following (in order):

1 byte File Data Type

3 byte File Identifier

1 byte File Data Type Specific Flags

1 byte General Flags

If file creation is successful (FS_NO_ERROR is returned), the file index assigned to the created file is

returned. Any other errors results in an invalid file index being returned (0x0000). If a auto generation of the

file index fails, this command should be retried.

Crypto File

 39 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

When creating an encrypted file, the user key must be specified beforehand and the crypto flag bit (0x04)

must be specified in the 1 byte general flags field. Also, the crypto handle must be free and not be in use by

any opened file.

FIT File

When creating a FIT file, the File Data Type field must be specified as 0x80.

Table 35. Create File Request Description

Parameters Type Range Description

Size UCHAR 11 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x0A

File Index USHORT 0-MAX(USHORT) Index at which to create file. Setting this

number to 0 will result in the next available

index being used.

Data Type UCHAR 0..MAX(UCHAR) Application defined data type. Please consult the

FIT documentation for FIT specific data types.

0x80 = FIT file type

Identifier UCHAR[3] Array[3] Application defined file identifier. Please consult

the FIT documentation for FIT file identifiers.

Please note that some applications, including

FIT, use parts of this identifier to define a file

sub type.

Data Type Specific Flags UCHAR Bit map Application specific file flags.

General Flags UCHAR Bit map General File Flags

76543210

||||||XX-ĄReserved

|||||X---ĄCrypto

||||X----ĄAppend

|||X-----ĄArchive

||X------ĄErase

|X-------ĄWrite

X--------ĄRead

Please consult ANTFS specification for complete

40 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

details.

Table 36. Create File Output Description

Parameters Type Range Description

Size UCHAR 4 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x0A

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

File Index USHORT 1..MAX(USHORT) File index of file created.

Example Usage

USHORT usFileIndex;

usFileIndex = ANTFS_FileCreate(0, 1, 0x00ABCDEF, 0x00, 0xE0); // r/w/e

If(usFileIndex != 0x0000)

{

 printf(“File created at index %d\n”, usFileIndex);

}

else

{

 printf(“Error creating file. Error: %d\n”, ANTFS_GetLastError());

}

6.3.8 MESG_FS_FILE_OPEN (0xE20B)

UCHAR ANTFS_FileOpen(USHORT usFileIndex_, UCHAR ucOpenFlags_);

Open existing file in FS, open flags need to be supported by the file. By default, read and write pointers are

set at the beginning of the file. If append flag is set in Open Flags parameter, then the write pointer is set to

the end of the file.

 41 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

The following table describes the open flags.

Define ID Description

FS_FILE_OPERATION_OVERRIDE_ATTRIBUTES 0x01 Allows user to force open parameters (for example to

write to a read-only file).

ANTFS_GENERAL_FLAGS_CRYPTO 0x04 Open with crypto handle

ANTFS_GENERAL_FLAGS_APPEND_ONLY 0x08 Open handle to end of file and append

ANTFS_GENERAL_FLAGS_ARCHIVED 0x10 Open archived file

ANTFS_GENERAL_FLAGS_CAN_ERASE 0x20 Handle can erase file

ANTFS_GENERAL_FLAGS_CAN_WRITE 0x40 Handle can write to file

ANTFS_GENERAL_FLAGS_CAN_READ 0x80 Handle can read from file

If file open is successful (FS_NO_ERROR, with the exceptions discussed in FIT File and Crypto FIT File), the

file handle number is returned. Any other response code results in file open failure and the file handle

returned being invalid (0xFF).

Crypto File

When dealing with an encrypted file (file general flags has crypto bit 0x04 present), to be able to decrypt

(read) or encrypt (write) data, the user key must be specified beforehand. To allow file encryption/decryption

operation on a handle, the crypto bit (0x04) must be set in Open flags parameter. This effectively assigns the

handle as the encryption/decryption handle (crypto handle). Only 1 encryption/decryption handle can be

assigned.

An encrypted file can be opened as is without the crypto handle. An unencrypted file cannot be opened with

the crypto handle.

FIT File

When opening a handle with write permissions (write/erase/append flag) to a valid FIT file, the file is resized

by removing the 2-byte file CRC at the end of the file. If the file is invalid, then the file is not resized and the

following response codes are returned, but the file is allowed to be opened.

FS_FIT_FILE_HEADER_ERROR - FIT file has incorrect header information or < minimum header size

FS_FIT_FILE_SIZE_INTEGRITY_ERROR -FIT file size does not match calculated size from FIT header info

When opening a read-only handle to a FIT file, the validity of the FIT file is checked. If the file is invalid, the

following response codes are returned, but the file is allowed to be opened.

FS_FIT_FILE_HEADER_ERROR - FIT file has incorrect header information or < minimum header size

FS_FIT_FILE_SIZE_INTEGRITY_ERROR - FIT file size does not match calculated size from FIT header info

42 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Crypto FIT File

When dealing with an encrypted FIT file, a crypto handle should be used to properly access the file. If the

encrypted FIT file is opened without this handle, then the file check will fail but still allow the file to be

opened and not be resized (when opened for writing).

Table 37. Open File Request Description

Parameters Type Range Description

Size UCHAR 6 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x0B

File Index USHORT 0-MAX(USHORT) Index of file to open

Open Flags UCHAR Bit Map Open Flags

Definition:

76543210

|||||||XĄ OVERRIDE ATTRIBUTES

|||||X--Ą CRYPTO

||||X---Ą APPEND ONLY

|||X----Ą ARCHIVED

||X-----Ą CAN ERASE

|X------Ą CAN WRITE

X-------Ą CAN READ

 43 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 38. Open File Output Description

Parameters Type Range Description

Size UCHAR 3 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x0B

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

FS_FIT_FILE_HEADER_ERROR

FS_FIT_FILE_SIZE_INTEGRITY_ERROR

Any other: command was not successful

File Handle UCHAR 0-MAX(UCHAR) File handle to opened file.

0xFF file handle is invalid.

Example Usage

UCHAR ucFileHandle = ANTFS_FileOpen(1,0);

if(ucFileHandle != 0xFF)

printf(“File opened handle = %d\n”, ucFileHandle);

else

printf(“Error error opening file. Error %d\n”, ANTFS_GetLastError());

6.3.9 MESG_FS_FILE_READ_ABSOLUTE (0xE20E)

UCHAR ANTFS_FileReadAbsolute(UCHAR ucFileHandle_, ULONG ulOffset_, UCHAR ucReadSize_, UCHAR*

pucReadBuffer_);

Read from absolute offset into a file. File must be opened for reading beforehand. After reading, read

pointers positioned at the end of the bytes read.

On successful reads (FS_NO_ERROR), the returned number of bytes read as well as the payload is returned.

Reading past the end of the file results in FS_EOF_REACHED_ERROR, however the number of read bytes and

the payload prior to reaching EOF is returned.

Crypto File

If reading from a crypto handle, the return payload contains the file‟s decrypted content.

FIT File or Crypto FIT File

44 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

If file is read-locked, reading from the write handle (handle that is allowed to write) is prevented (returns

with response code FS_BAD_PERMISSIONS_ERROR). A write handle is read-locked when there is another

handle that has the file opened for read-only.

Table 39. Read File Absolute Request Description

Parameters Type Range Description

Size UCHAR 9 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x0E

File Handle UCHAR 1-MAX(UCHAR) Valid file handle

Offset ULONG 0-MAX(ULONG) Byte offset into file.

Read Size UCHAR 0-32 Number of bytes to read

Table 40. Read File Absolute Output Description

Parameters Type Range Description

Size UCHAR 3+X Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x0E

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

FS_EOF_REACHED_ERROR

FS_BAD_PERMISSIONS_ERROR

Any other: command was not successful

Size Read UCHAR 0-32 Number of bytes read

Payload UCHAR[X] Array[X] Buffer of requested bytes. Max size of buffer is

32 bytes

Example Usage

UCHAR ucFileHandle = ANTFS_FileOpen(1,0);

if(ucFileHandle != 0xFF)

 45 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

{

UCHAR aucBuffer[16];

UCHAR usReadBytes = ANTFS_FileReadAbsolute(ucFileHandle,8,16, aucBuffer);

printf(“Read = %d bytes\n”, usReadBytes);

}

else

{

printf(“Error reading file. Error %d\n”, ANTFS_GetLastError());

}

6.3.10 MESG_FS_FILE_READ_RELATIVE (0xE20F)

UCHAR ANTFS_FileReadRelative(UCHAR ucFileHandle_, UCHAR ucReadSize_, UCHAR* pucReadBuffer_);

Read from current read pointer position in file. File must be opened for reading beforehand. After reading,

read pointers positioned at the end of the bytes read.

On successful reads (FS_NO_ERROR), the returned number of bytes read as well as the payload is returned.

Reading past the end of the directory results in FS_EOF_REACHED_ERROR, however the number of read bytes

and the payload prior to reaching EOF is returned.

Crypto File

If reading from a crypto handle, the return payload contains the file‟s decrypted content.

FIT File or Crypto FIT File

If file is read-locked, reading from the write handle (handle that is allowed to write) is prevented (returns

with response code FS_BAD_PERMISSIONS_ERROR). A write handle is read-locked when there is another

handle that has the file opened for read-only.

Table 41. Read File Relative Request Description

Parameters Type Range Description

Size UCHAR 5 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x0F

File Handle UCHAR 1-MAX(UCHAR) Valid file handle

46 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Read Size UCHAR 0-32 Number of bytes to read

Table 42. Read File Relative Output Description

Parameters Type Range Description

Size UCHAR 3+X Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x0F

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

FS_EOF_REACHED_ERROR

FS_BAD_PERMISSIONS_ERROR

Any other: command was not successful

Size Read UCHAR 0-32 Number of bytes read

Payload UCHAR[X] Array[X] Buffer of requested bytes. Max size of buffer is

32

Example Usage

UCHAR ucFileHandle = ANTFS_FileOpen(1,0);

if(ucFileHandle != 0xFF)

{

UCHAR aucBuffer[16];

UCHAR usReadBytes = ANTFS_FileReadAbsolute(ucFileHandle, 16, aucBuffer);

printf(“Read = %d bytes\n”, usReadBytes);

}

else

{

 printf(“Error reading file. Error %d\n”, ANTFS_GetLastError());

}

6.3.11 MESG_FS_FILE_WRITE_ABSOLUTE (0xE210)

UCHAR ANTFS_FileWriteAbsolute(UCHAR ucFileHandle_, ULONG ulFileOffset_, UCHAR ucWriteSize_, const

UCHAR* pucWriteBuffer_, UCHAR* ucBytesWritten_);

Write to absolute offset into a file. File cannot be written to if it was opened for reading by another handle

(read-locked). If this is the case a FS_BAD_PERMISSIONS_ERROR (0x0E) will result. When using a non-crypto

handle, write absolute cannot be used if file only opened for append operation. After writing, write positioned

at the end of the bytes written.

 47 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

On successful writes (FS_NO_ERROR), the number of bytes written is returned. If any writing failure o ccurs,

the response code is returned along with the number of bytes managed to be written. Possible response

codes are:

Crypto File

If writing to a crypto handle, the input payload is encrypted then written to FS.

Table 43. Write File Absolute Request Description

Parameters Type Range Description

Size UCHAR 9+X Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x10

File Handle UCHAR 1-MAX(UCHAR) Valid file handle

Offset ULONG 0-MAX(ULONG) Byte offset into file.

Write Size UCHAR 0-32 Number of bytes to read

Payload UCHAR[X] Array[X] Buffer of bytes to write. Max size of buffer is 32.

Table 44. Write File Absolute Output Description

Parameters Type Range Description

Size UCHAR 3 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x10

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

FS_MEMORY_NO_FREE_SECTORS_ERROR

Any other: command was not successful

Bytes Written UCHAR 0-32 Number of bytes successfully written to

EEPROM.

48 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Example Usage

UCHAR ucFileHandle = ANTFS_FileOpen(1,0);

if(ucFileHandle != 0xFF)

{

UCHAR aucBuffer[4] = {0xAA, 0xBB, 0xCC, 0xDD };

// Write 4 bytes at offset 8 bytes

UCHAR ucBytes = ANTFS_FileWriteAbsolute(ucFileHandle,8,4, aucBuffer);

printf(“Wrote = %d bytes\n”, ucBytes);

}

else

{

printf(“Error reading file. Error %d\n”, ANTFS_GetLastError());

}

6.3.12 MESG_FS_FILE_WRITE_RELATIVE (0xE211)

UCHAR ANTFS_FileWriteRelative(UCHAR ucFileHandle_, UCHAR ucWriteSize_, const UCHAR* pucWriteBuffer_,

UCHAR* ucBytesWritten_);

Write to current write pointer position in file. If this is the case a FS_BAD_PERMISSIONS_ERROR (0x0E) will

result. File cannot be written to if opened by another handle for reading (read-locked). After writing, write

positioned at the end of the bytes written.

On successful writes (FS_NO_ERROR), the number of bytes written is returned. If any writing failure occurs,

the response code is returned along with the number of bytes managed to be written.

Crypto File

If writing to a crypto handle, the input payload is encrypted then written to FS.

Table 45. Write File Relative Request Description

Parameters Type Range Description

Size UCHAR 5+X Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x11

File Handle UCHAR 1-MAX(UCHAR) Valid file handle

Write Size UCHAR 0-32 Number of bytes to read

 49 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Payload UCHAR[X] Array[X] Buffer of bytes to write. Max size of buffer is 32.

Table 46. Write File Relative Output Description

Parameters Type Range Description

Size UCHAR 3 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x11

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

FS_MEMORY_NO_FREE_SECTORS_ERROR

Any other: command was not successful

Bytes Written UCHAR 0-32 Number of bytes successfully written to

EEPROM.

Example Usage

UCHAR ucFileHandle = ANTFS_FileOpen(1,0);

if(ucFileHandle != 0xFF)

{

UCHAR aucBuffer[4] = {0xAA, 0xBB, 0xCC, 0xDD };

// Write 4 bytes from file

UCHAR ucBytes = ANTFS_FileWriteRelative(ucFileHandle,4, aucBuffer);

printf(“Wrote = %d bytes\n”, ucBytes);

}

else

{

printf(“Error reading file. Error %d\n”, ANTFS_GetLastError());

}

6.3.13 MESG_FS_FILE_GET_SIZE (0xE213)

ULONG ANTFS_FileGetSize(UCHAR ucFileHandle_);

Get size of open file in bytes. If successful, FS_NO_ERROR is returned along with the file size in bytes. If any

other response code is returned, an invalid file size value is returned (0xFFFFFFFF).

50 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 47. File Size Request Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x13

File Handle UCHAR 1-MAX(UCHAR) Valid file handle

Table 48. File Size Output Description

Parameters Type Range Description

Size UCHAR 6 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x13

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

File Size ULONG 0-MAX(ULONG) Size of file in bytes (0xFFFFFFFF invalid).

Example Usage

UCHAR ucFileHandle = ANTFS_FileOpen(1,0);

if(ucFileHandle != 0xFF)

{

// Write 4 bytes from file

ULONG ulSize = ANTFS_FileGetSize(ucFileHandle);

 printf(“File size = %d bytes\n”, ulSize);

}

else

{

 printf(“Error reading file. Error %d\n”, ANTFS_GetLastError());

}

 51 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.3.14 MESG_FS_FILE_GET_SIZE_IN_MEM (0xE215)

ULONG ANTFS_FileGetSizeInMem(UCHAR ucFileHandle_);

Get size of the file in terms of the number of total bytes allocated to the file in the FS (size in memory). If

successful, FS_NO_ERROR is returned along with the size in bytes. If any other response code is returned, an

invalid file size value is returned (0xFFFFFFFF).

Table 49. File Size in Memory Request Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x15

File Handle UCHAR 1-MAX(UCHAR) Valid file handle

Table 50. File Size in Memory Output Description

Parameters Type Range Description

Size UCHAR 6 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x15

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

File Size ULONG 0-MAX(ULONG) Size of file in bytes (0xFFFFFFFF invalid).

Example Usage

UCHAR ucFileHandle = ANTFS_FileOpen(1,0);

if(ucFileHandle != 0xFF)

{

// Write 4 bytes from file

ULONG ulSize = ANTFS_FileGetSizeInMem(ucFileHandle);

printf(“File size in memory = %d bytes\n”, ulSize);

}

else

52 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

{

 printf(“Error reading file. Error %d\n”, ANTFS_GetLastError());

}

6.3.15 MESG_FS_FILE_GET_SPECIFIC_FILE_FLAGS (0xE214)

UCHAR ANTFS_FileGetSpecificFlags(UCHAR ucFileHandle_);

Gets the application defined flags of opened file. If successful, FS_NO_ERROR is returned along with the

application defined flags on the file. If any other response code is returned, flag value of 0x00 is returned.

Table 51. Specific File Flags Request Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x14

File Handle UCHAR 1-MAX(UCHAR) Valid file handle

Table 52. Specific File Flags Output Description

Parameters Type Range Description

Size UCHAR 6 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x14

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

File Flags UCHAR 0-MAX(UCHAR) File specific flags

Example Usage

UCHAR ucFileHandle = ANTFS_FileOpen(1,0);

if(ucFileHandle != 0xFF)

{

// Write 4 bytes from file

ULONG ucFlags = ANTFS_FileGetSpecificFlags(ucFileHandle);

 printf(“Specific Flags = 0x%02x\n”, ucFlags);

 53 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

}

else

{

 printf(“Error reading file. Error %d\n”, ANTFS_GetLastError());

}

6.3.16 MESG_FS_SYSTEM_TIME (0xE23D)

ULONG ANTFS_FileGetSystemTime();

When this message ID is used in a request message, the current system time used in FS is returned.

Table 53. System Time Request Description

Parameters Type Range Description

Size UCHAR 3 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x3D

Table 54. System Time Output Description

Parameters Type Range Description

Size UCHAR 6 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x3D

System time ULONG 0-MAX(ULONG) System time in seconds.

Example Usage

ULONG ulTime = ANTFS_FileGetSystemTime();

printf(“Time in FS = %ds\n”, ulTime);

54 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.4 FS-Crypto Commands

6.4.1 MESG_FS_CRYPTO_ADD_USER_KEY_INDEX (0xE245)

UCHAR ANTFS_CryptoAddUserKeyIndex(UCHAR ucIndex_, UCHAR* pucKey_);

Adds specified user key to be stored in internal memory. Keys are enumerated by Key Index. Up to 10 keys

can be used. If successfully stored, FS_NO_ERROR is returned.

Table 55. Crypto Add User Key Command Description

Parameters Type Range Description

Size UCHAR 34 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x45

Key Index UCHAR 0-9 Index to insert key into.

User Key UCHAR[] Array[32] Array with user key.

Table 56. Crypto Add User Key Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x45

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

UCHAR aucKey[] = { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,

 0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,

 0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,

 0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F);

UCHAR ucResponse = ANTFS_CryptoAddUserKeyIndex(0, aucKey);

if(ucResponse == FS_NO_ERROR)

 printf(“Key Set successfully\n”);

 55 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.4.2 MESG_FS_CRYPTO_SET_USER_KEY_INDEX (0xE246)

UCHAR ANTFS_CryptoSetUserKeyIndex(UCHAR ucIndex_);

Specify stored user key (specified by Key Index) to be used by FS Encryption/Decryption process. Key

remains active until reset, memory re-initialization via MESG_FS_INIT MEMORY or another key is specified. If

key successfully selected, FS_NO_ERROR is returned.

Table 57. Crypto Use Command Description

Parameters Type Range Description

Size UCHAR 5 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x46

Key Index UCHAR 0-9 Key Index to use for crypto operations.

Table 58. System Time Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x46

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

UCHAR ucResponse = ANTFS_CryptoSetUserKeyIndex(3);

if(ucResponse == FS_NO_ERROR)

 printf(“Key Set to index 3 successfully\n”);

56 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.4.3 MESG_FS_CRYPTO_SET_USER_KEY_VAL (0xE247)

UCHAR ANTFS_CryptoSetUserKeyVal(UCHAR* pucKey_);

Specify non-stored user key to be used by FS Encryption/Decryption process. Key remains active until reset,

memory re-initialization via MESG_FS_INIT_MEMORY or another key is specified. Setting this command

overrides any other key setting. If key successfully set, FS_NO_ERROR is returned.

Table 59. Crypto Add User Key Value Command Description

Parameters Type Range Description

Size UCHAR 33 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x47

User Key UCHAR[] Array[32] Array with user key.

Table 60. Crypto Add User Key Value Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x47

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

UCHAR aucKey[] = { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,

 0x08,0x09,0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,

 0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,

 0x18,0x19,0x1A,0x1B,0x1C,0x1D,0x1E,0x1F);

UCHAR ucResponse = ANTFS_CryptoAddUserKeyIndex(aucKey);

 57 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

if(ucResponse == FS_NO_ERROR)

 printf(“Key Set successfully\n”);

6.5 Fit Commands

6.5.1 MESG_FS_FIT_FILE_INTEGRITY_CHECK (0xE250)

UCHAR ANTFS_FitFileIntegrityCheck(UCHAR ucFileHandle_);

When this command is issued, a file integrity check is performed on the selected FIT file by calculating the

file 2 byte CRC and comparing it versus the appended 2 byte CRC , and by checking file size and the header.

If file integrity is intact, then FS_NO_ERROR is returned.

Provided file handle must be pointing to a FIT file (0x80 data type in file directory entry) as well as opened

as read-only. Performing an integrity check on a non FIT file and/or a write handle (write/erase/append open

flags) is not allowed.

Table 61. Fit File Integrity Check Command Description

Parameters Type Range Description

Size UCHAR 2 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x50

File Handle UCHAR 0-MAX(UCHAR) File handle of opened file.

Table 62. Fit File Integrity Check Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x50

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

58 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

UCHAR ucResponse = ANTFS_FitFileIntegrityCheck(ucFileHandle);

if(ucResponse == FS_NO_ERROR)

 printf(“Fit file is intact\n”);

6.6 ANT-FS Commands

6.6.1 MESG_FS_ANTFS_OPEN (0xE231)

UCHAR ANTFS_OpenBeacon();

Starts ANT-FS Beacon on all channels that have been enabled as ANT-FS using the command

MESG_FS_ANTFS_SET_LINK_FREQ.

Table 63. Open Beacon Command Description

Parameters Type Range Description

Size UCHAR 1 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x31

Table 64. Open Beacon Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x31

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

…

ANTFS_SetLinkFrequency(0,72); // Configure channel 0 to be ANT-FS, 2472MHz

ANTFS_SetLinkFrequency(1,57); // Configure channel 1 to be ANT-FS, 2457MHz

 59 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

…

ANTFS_OpenBeacon();// Open ANT-FS beacon on channel 0 and 1

if(ucResponse == FS_NO_ERROR)

 printf(“ANT-FS Beacons Active\n”);

6.6.2 MESG_FS_ANTFS_CLOSE (0xE232)

UCHAR ANTFS_CloseBeacon();

Stop all active beacons, regardless of the state they are in.

Table 65. Close Beacon Command Description

Parameters Type Range Description

Size UCHAR 1 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x32

Table 66. Close Beacon Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x32

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

ANTFS_CloseBeacon();

if(ucResponse == FS_NO_ERROR)

 printf(“ANT-FS Beacons Closed\n”);

60 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.6.3 MESG_FS_ANTFS_CONFIG_BEACON (0xE233)

UCHAR ANTFS_ConfigBeacon(USHORT usDeviceType_, USHORT usManufacturer_, UCHAR ucAuthType_,

UCHAR ucBeaconStatus_);

Configure beacon parameters. Please note that changing beacon parameters will also change the behavio r of

the beacon. For example, if the channel period indicated in the beacon is changed, the channel period will

also change without the requirement to send a separate channel period command.

The authentication supported by the Client device is indicated by the Beacon Auth Type field. The criteria

used by the Client to accept or reject a Host request is governed by the tab le below.

Table 67. Beacon Authentication Logic

Beacon IndicatesĄ Passthrough Pair Passkey

Host RequestsĄ

Passthrough Pass Fail Fail

Pair Pass Pass Pass

Passkey Pass Fail Pass

Table 68. Configure Beacon Command Description

Parameters Type Range Description

Size UCHAR 9 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x33

Beacon Device Type USHORT 0-MAX(USHORT) Identifier assigned to specific device. This

identifier is generally assigned by the

manufacturer.

Beacon Manufacturer ID USHORT 0-MAX(USHORT) Identifies the manufacturer of the transmitting

device. For ANT+ implementations this number

is assigned by ANT. Please contact ANT for

details.

Beacon Auth Type UCHAR 0-MAX(UCHAR) 0 – passthrough

2 – pairing

3 – passkey

Beacon Status UCHAR 0-MAX(UCHAR) For details of the status byte please refer to the

ANT-FS Technical Specification.

 61 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

76543210

|||||***-Ą Beacon Channel Period

||||*----Ą Pairing enabled

|||*-----Ą Upload enabled

||*------Ą Data Available

**-------Ą Reserved

62 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 69. Config Beacon Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x33

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

USHORT usDeviceType = 1; // Assigned by manufacturer

USHORT usManufacturer = 257; // Assigned by ANT+

UCHAR ucAuthType = 3; // Passkey

UCHAR ucBeaconStatus = 0x2B; // Data available

 // No Upload

 // Pairing enabled

 // 4Hz channel period

UCHAR ucResponse = ANTFS_ConfigBeacon(usDeviceType, usManufacturer, ucAuthType,

ucBeaconStatus);

if(ucResponse == FS_NO_ERROR)

 printf(“ANT-FS Beacon Configured\n”);

6.6.4 MESG_FS_ANTFS_SET_AUTH_STRING (0xE234)

UCHAR ANTFS_SetFriendlyName(UCHAR ucLength_, const UCHAR* pucString_);

Or

UCHAR ANTFS_SetPasskey(UCHAR ucLength_, const UCHAR* pucString_);

Set the friendly name or authentication passkey strings. The friendly name is used in the authentication

states to identify the client to the host using a readable name. The authentication passkey is used by the

client when the host attempts to use the passkey method of authentication. The passkey will also be sent to

the host upon a successful pairing authentication.

 63 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 70. Set Authentication String Command Description

Parameters Type Range Description

Size UCHAR 2+X Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x34

String Type UCHAR 0-1 Differentiate what type of string is being sent.

0 – Friendly Name

1 – Passkey

String UCHAR[X] Array[16(max)] Friendly name or passkey bytes.

Table 71. Set Authentication String Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x34

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

const UCHAR aucPasskey = {0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF, 0x11, 0x22};

UCHAR ucResponse = ANTFS_SetFriendlyName (3, “Bob”);

if(ucResponse == FS_NO_ERROR)

 printf(“Friendly name set\n”);

ucResponse = ANTFS_SetPasskey (8, aucPasskey);

if(ucResponse == FS_NO_ERROR)

 printf(“Passkey set\n”);

64 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.6.5 MESG_FS_ANTFS_SET_BEACON_STATE(0xE235)

UCHAR ANTFS_SetBeaconState(UCHAR ucBeaconStatus_)

Set beacon status byte 1. Please note that changing beacon parameters will also change the behavior of the

beacon. For example, if the channel period indicated in the beacon is changed, the channel period will also

change without the requirement to send a separate channel period command.

Table 72. Set Beacon State Command Description

Parameters Type Range Description

Size UCHAR 2 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x35

Beacon Status UCHAR 0-MAX(UCHAR) For details of the status byte please refer to the

ANT-FS Technical Specification.

76543210

|||||***-Ą Beacon Channel Period

||||*-----Ą Pairing enabled

|||*------Ą Upload enabled

||*-------Ą Data Available

**--------Ą Reserved

Table 73. Set Beacon State Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x35

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

 65 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

UCHAR ucBeaconStatus = 0x2B; // Data available

 // No Upload

 // Pairing enabled

 // 4Hz channel period

UCHAR ucResponse = ANTFS_SetBeaconState (ucBeaconStatus);

if(ucResponse == FS_NO_ERROR)

 printf(“Beacon set\n”);

6.6.6 MESG_FS_ANTFS_PAIR_RESPONSE (0xE236)

BOOL ANTFS_PairResponse(BOOL bAccept_)

Respond to pairing request event (MESG_FS_ANTFS_EVENT_PAIR_REQUEST). The pairing response should

generally come from the user of the client device through some type of user interface. If pairing is not

enabled in the beacon the pairing request will be automatically rejected by the client, without the need for

the external host to send this command.

Table 74. Pairing Response Command Description

Parameters Type Range Description

Size UCHAR 2 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x36

Pairing Response UCHAR 0-1 Accept or reject pairing request.

0 – Reject

1 – Accept

66 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 75. Pairing Response Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x36

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

switch (ucEvent_)

{

 …

 case MESG_FS_ANTFS_EVENT_PAIR_REQUEST:

 {

// Accept or reject generally involves a UI operation

ANTFS_PairResponse(TRUE);

break;

}

 …

}

6.6.7 MESG_FS_ANTFS_SET_LINK_FREQ (0xE237)

UCHAR ANTFS_SetLinkFrequency(UCHAR ucChannelNumber_, UCHAR ucFrequency_)

Set the RF frequency at which the LINK beacon will operate. The ANT-FS channel may be disabled by setting

the RF frequency to 0xFF. This effectively detaches the ANT-FS engine from the channel, without otherwise

modifying it. If the channel is opened all regular channel messages will cease to be filtered b y ANT-FS and

will be sent directly to the application MCU for processing. For ANT+ implementations please consult the

specific ANT+ device profile for assigned LINK frequency.

 67 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 76. Set Link Frequency Command Description

Parameters Type Range Description

Size UCHAR 3 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x37

Channel Number UCHAR 0-7 ANT channel number.

RF Freq UCHAR 0-MAX(UCHAR) RF Frequency (+2400MHz)

0xFF = Disable

Table 77. Set Link Frequency Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x37

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

// Set channel 0 link frequency to 2457MHz

UCHAR ucResponse = ANTFS_SetLinkFrequency(0, 57);

if(ucResponse == FS_NO_ERROR)

 printf(“Link Frequency set\n”);

6.6.8 MESG_FS_ANTFS_SET_BEACON_TIMEOUT (0xE238)

UCHAR ANTFS_SetBeaconTimeout(UCHAR ucTimeout_)

The beacon timeout is the amount of time the Client will stay in the authentication or transport state without

receiving any commands from the host before returning to the link state. The default beacon timeout is 10s.

68 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 78. Set Beacon Timeout Command Description

Parameters Type Range Description

Size UCHAR 2 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x38

Timeout UCHAR 0-MAX(UCHAR) Timeout in seconds.

Table 79. Set Beacon Timeout Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x38

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

// Set timeout to 20 seconds.

UCHAR ucResponse = ANTFS_SetBeaconTimeout(20);

if(ucResponse == FS_NO_ERROR)

 printf(“Timeout set\n”);

6.6.9 MESG_FS_ANTFS_SET_PAIRING_TIMEOUT (0xE239)

UCHAR ANTFS_SetPairingTimeout(UCHAR ucTimeout_)

The pairing timeout is the amount of time the Client will wait for the host MCU to accept or reject a pairing

request. The pairing request is generally accepted or rejected by the user of the client device throu gh some

type of user interface. The default pairing timeout is 30s.

 69 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 80. Set Pairing Timeout Command Description

Parameters Type Range Description

Size UCHAR 2 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x39

Timeout UCHAR 0-MAX(UCHAR) Timeout in seconds.

Table 81. Set Pairing Timeout Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x39

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

// Set timeout to 20 seconds.

UCHAR ucResponse = ANTFS_SetPairingTimeout(20);

if(ucResponse == FS_NO_ERROR)

 printf(“Timeout set\n”);

6.6.10 MESG_FS_ANTFS_REMOTE_FILE_CREATE_EN (0xE23A)

UCHAR ANTFS_EnableRemoteFileCreate(BOOL bEnable_)

Enables or disables the ability of the ANT-FS host to create files on the client. This functionality is disabled by

default.

70 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 82. Enable Remote File Create Command Description

Parameters Type Range Description

Size UCHAR 2 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x3A

Enable UCHAR 0-1 Enable or disable remote file create.

0 – disable

1 - enable

Table 83. Enable Remote File Create Response Description

Parameters Type Range Description

Size UCHAR 4 Message size

Extended ID Response
UCHAR 0xE0

Extended ID Response
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being responded to.
UCHAR 0x3A

Response code UCHAR FS Response Code Response Code:

FS_NO_ERROR

Otherwise command was not successful

Example Usage

// Enable remote creation of files.

UCHAR ucResponse = ANTFS_EnableRemoteFileCreate(1);

if(ucResponse == FS_NO_ERROR)

 printf(“Remote file creation enabled.\n”);

6.7 ANT-FS Reponses

6.7.1 MESG_FS_GET_CMD_PIPE (0xE23B)

UCHAR ANTFS_GetCmdPipe(UCHAR ucOffset_, UCHAR ucReadSize_, UCHAR* pucReadBuffer_)

 71 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Read a command from the command pipe. The host MCU will be notified of a new command with the

MESG_FS_ANTFS_EVENT_CMD_RECIEVED event. For more details on the command pipe as well as defined

commands please consult the ANT-FS Technical Specification.

Table 84. Get Command Pipe Request Description

Parameters Type Range Description

Size UCHAR 5 Message size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x3B

Offset UCHAR 0-32 Offset into command being read

Read Size UCHAR 0-32 Number of bytes to read.

Table 85. Get Command Pipe Output Description

Parameters Type Range Description

Size UCHAR 2+X Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x3B

Read Size UCHAR 0-32 Number of bytes read

Read Payload UCHAR[X] Array(UCHAR) Read payload. Max size of buffer is 32.

Example Usage

N/A

6.7.2 MESG_FS_ANTFS_SET_CMD_PIPE (0xE23C)

UCHAR ANTFS_SetCmdPipe(UCHAR ucOffset_, UCHAR ucWriteSize_, const UCHAR* pucWriteBuffer_)

Send commands over the command pipe.

72 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 86. Set Command Pipe Request Description

Parameters Type Range Description

Size UCHAR 5+X Message Size

Extended ID Request
UCHAR 0xE1

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x3C

Offset UCHAR 0-MAX(UCHAR) Offset into command being read.

Write Size UCHAR 0-32 Number of bytes to write.

Write Payload UCHAR[X] Array(UCHAR) Command bytes to write. Max buffer size is 32.

Table 87. Set Command Pipe Output Description

Parameters Type Range Description

Size UCHAR 2 Message size

Message ID
UCHAR 0xE2

Extended message id
UCHAR 0x3C

Bytes written UCHAR 0-32 Bytes successfully written.

Example Usage

N/A

6.8 ANT-FS Events

The integrated ANT-FS client will generate events to convey certain information to the host MCU. The general

format of the response is described below.

 73 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 88. Set Command Pipe Request Description

Parameters Type Range Description

Size UCHAR 4+X Message size

Extended ID Request
UCHAR 0xE0

Extended ID Request
UCHAR 0x00

Extended ID
UCHAR 0xE2

Extended ID being requested.
UCHAR 0x30

Event Code UCHAR 0-MAX(UCHAR) Event generated by ANT-FS

Payload UCHAR[X] Array(UCHAR) Payload of the generated event

The event code and the payload are unique depending on the event generated. The table below describes the

defined ANT-FS Client events.

Table 89. Integrated ANT-FS Events

ID Event Payload Description

0x01 MESG_FS_ANTFS_EVENT

_PAIR_REQUEST

Remote Friendly

Name (up to 16

bytes)

This event is generated if a pairing request is received from

the host.

0x02 MESG_FS_ANTFS_EVENT

_DOWNLOAD_START

File Index (2 bytes) This event is generated if the download of a file by a host

has started.

0x03 MESG_FS_ANTFS_EVENT

_UPLOAD_START

File Index (2 bytes) This event is generated if the upload of a file by a host has

started.

0x04 MESG_FS_ANTFS_EVENT

_DOWNLOAD_COMPLETE

File Index (2 bytes) This event is generated once the download of a file by a

host has completed.

0x05 MESG_FS_ANTFS_EVENT

_UPLOAD_COMPLETE

File Index (2 bytes) This event is generated once the upload of a file by a host

has completed.

0x06 MESG_FS_ANTFS_EVENT

_ERASE_COMPLETE

File Index (2 bytes) This event is generated after a successful erase request by

the host.

0x07 MESG_FS_ANTFS_EVENT

_LINK_STATE

ANT Channel

 (1 byte)

This event is generated whenever the Client state machine

moves into the LINK state on the specified channel.

0x08 MESG_FS_ANTFS_EVENT

_AUTH_STATE

ANT Channel (1

byte)

This event is generated whenever the Client state machine

moves into the AUTH state on the specified channel

0x09 MESG_FS_ANTFS_EVENT

_TRANSPORT_STATE

ANT Channel (1

byte)

This event is generated whenever the Client state machine

moves into the TRANSPORT state on the specified channel

0x0A MESG_FS_ANTFS_EVENT

_CMD_RECEIVED

CMD ID (1 byte) This event is generated whenever a command is received by

the client on the command pipe. The command has not been

74 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

processed by integrated ANT-FS.

0x0B MESG_FS_ANTFS_EVENT

_CMD_PROCESSED

CMD ID

(1 byte)

File

Index

(2

bytes)1

This event is generated whenever a command is received by

the client and processed by the integrated ANT-FS.

1 File Create only

 75 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.9 Response Codes

Table 90. General ANT-FS Response Codes

ID Event Description

0x00 FS_NO_ERROR Operation successful

0x01 FS_MEMORY_UNFORMATTED_ERROR NVM not formatted before attempting a file operation

0x02 FS_MEMORY_NO_FREE_SECTORS_ERROR NVM has no free sectors left to save

0x03 FS_MEMORY_READ_ERROR Error reading from NVM

0x04 FS_MEMORY_WRITE_ERROR Error writing to NVM

0x05 FS_MEMORY_ERASE_ERROR Error erasing NVM

0x06 FS_TOO_MANY_FILES_OPEN_ERROR No more file handles free (8 max)

0x07 FS_FILE_INDEX_INVALID_ERROR Invalid directory index specified

0x08 FS_FILE_INDEX_EXISTS_ERROR Tried to create file at index that already exists in file system

0x09 FS_AUTO_INDEX_FAILED_TRY_AGAIN_ERROR Auto index is pointing to a file index that already exists. Try

calling function again.

0x0A FS_FILE_ALREADY_OPEN_ERROR Attempting to open file that is already opened

0x0B FS_FILE_NOT_OPEN_ERROR Attempting operations on file that has not been opened

0x0C FS_DIR_CORRUPTED_ERROR Directory has become corrupted, must format and rebuild.

0x0D FS_INVALID_OFFSET_ERROR Invalid file offset specified

0x0E FS_BAD_PERMISSIONS_ERROR File does not have permissions to execute the requested

operation.

0x0F FS_EOF_REACHED_ERROR End of File reached

0x10 FS_INVALID_FILE_HANDLE_ERROR File handle specified is not valid

Table 91. FS Crypto Response Codes

ID Event Description

0x32 FS_CRYPTO_OPEN_PERMISSION_ERROR Attempting to open a non-crypto file with crypto handle

0x33 FS_CRYPTO_HANDLE_ALREADY_IN_USE Crypto handle already in use.

0x34 FS_CRYPTO_USER_KEY_NOT_SPECIFIED AES-128 key has not been specified

0x35 FS_CRYPTO_USER_KEY_ADD_ERROR Error adding AES-128 key

0x36 FS_CRYPTO_USER_KEY_FETCH_ERROR Unable to retrieve key from EEPROM

0x37 FS_CRYPTO_IVNONE_READ_ERROR Error reading crypto IV header

76 of 76

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table 92. FS FIT Response Codes

ID Event Description

0x64 FS_FIT_FILE_HEADER_ERROR FIT file has incorrect header information or < minimum header

size

0x65 FS_FIT_FILE_SIZE_INTEGRITY_ERROR FIT file size does not match calculated size from FIT header

info

0x66 FS_FIT_FILE_CRC_ERROR FIT CRC is incorrect

0x68 FS_FIT_FILE_CHECK_FILE_TYPE_ERROR Incorrect file type

